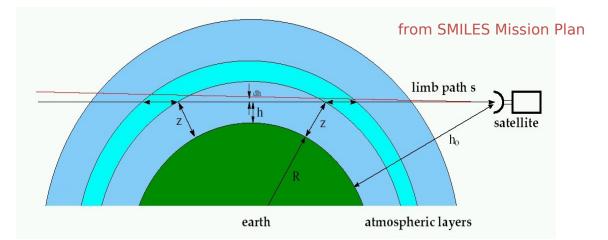


JEM/SMILES limb sounder: the Level 2 research products

P. Baron¹, Y. Kasai¹, S. Ochiai¹, J. Mendrok¹ J. Urban², J. Möller², D. Murtagh² and the SMILES retrieval algorithm team

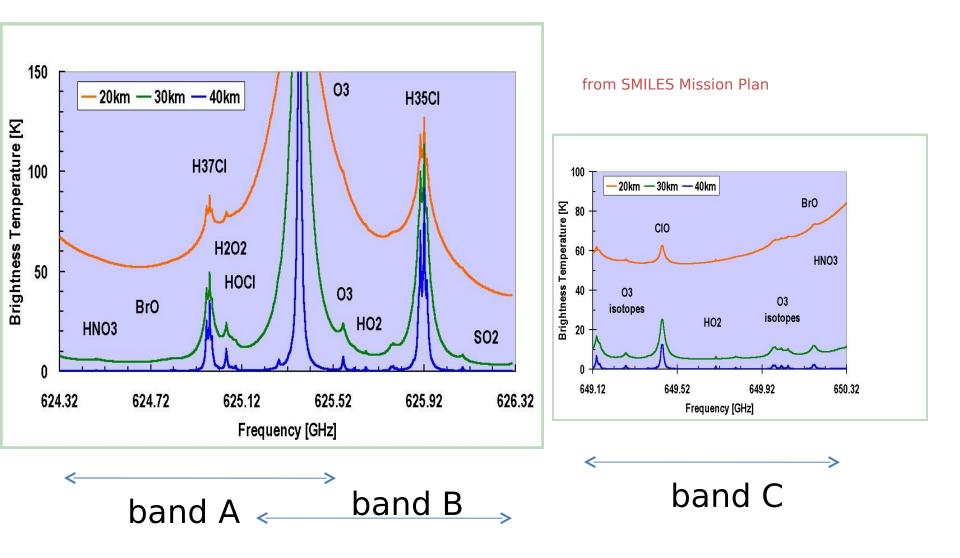
 (1) National Institute of Information and Communications Technology (NICT), Tokyo, Japan.
 (2) Chalmers University of Technology, Goteborg, Sweden

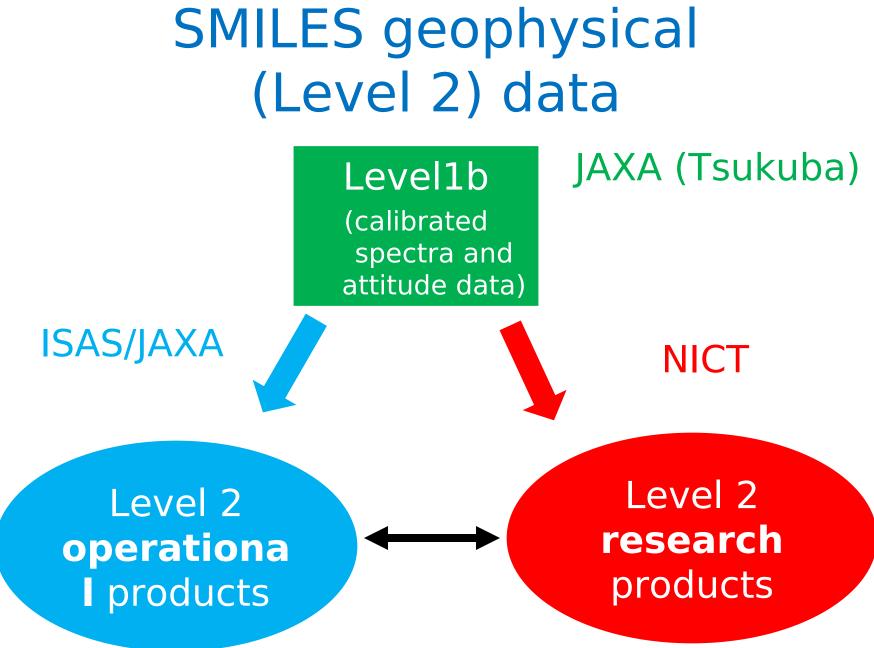
Outline


- Brief introduction about SMILES observations
- Description of the L2 research products
- Description of the processing chain for the L2research
- Conclusions and future works

Superconducting submillimeter-Wave Limb Emission Sounder (SMILES) overview

- Limb-sounder to study the middle atmosphere chemistry and dynamics (~10-~80 km)
- High sensitive sub-millimeter receiver (first use for atmospheric observation of a 4K cooled SIS mixer in space)
- Operate from the Japanese Experiment Module (JEM) on the International Space Station (ISS).
- To be launched in Sept. 2009

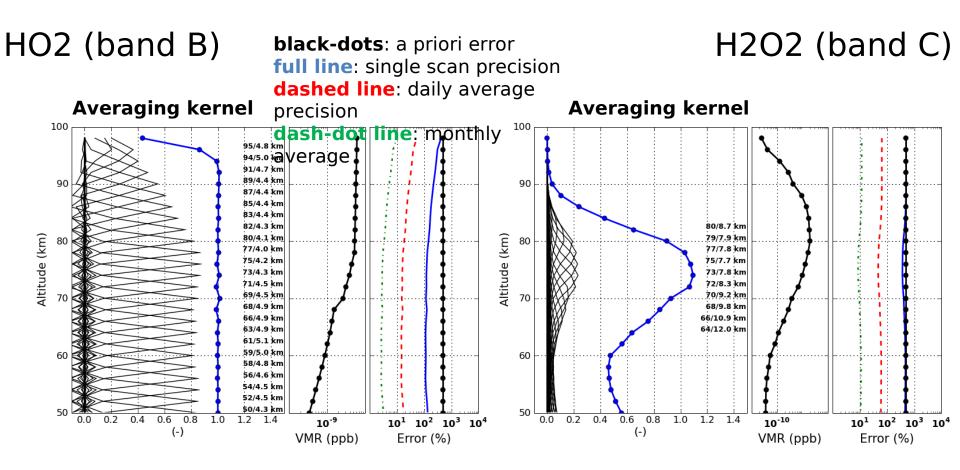

Observation characteristics


Limb scanning observation

- Atmosphere is repeatedly scanned from the below surface to ~100 km height (1600 scans/day).
- 3 spectral bands (λ=0.1 mm) have been defined but
 only 2 are simultaneously observed during one scan.
- Vertical distribution of molecular abundances and temperature/pressure (Level 2 data) are derived from each scan.

Frequency bands

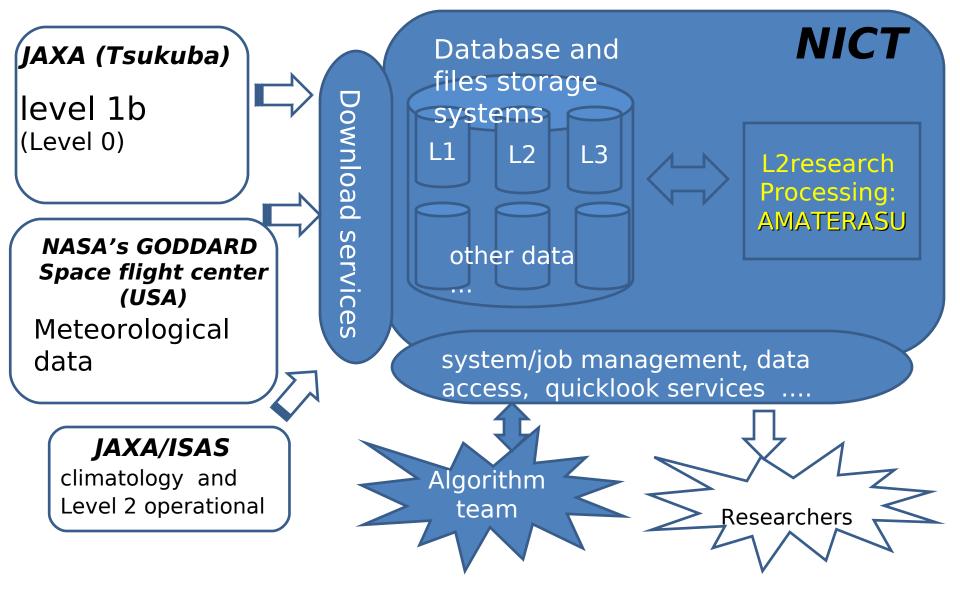
Why a L2 research product ?


- Support the operational chain:
 - cross-comparison of the products (retrieval algorithms validation)
 - investigate improvement for retrieval algorithms
 - correct instrument problems observed after launch
- Produce data that are not in the operational data
 - UT/LS H2O, ice water content ...
 - mesospheric data
 - molecules with extremely low SNR
- Research on atmospheric remote sensing

The Level 2 research products

Processing modes	Band A	Band B	Band C
Stratospheric high SNR 10-60 km	O ₃ , H ³⁷ Cl, H ₂ O, Temp, Pointing offset, wind	O_3 , H ³⁵ Cl, H ₂ O, Temp, Pointing offset, wind	H ₂ O, CIO, O ₃
Stratospheric medium/low SNR 10-60 km	HOCI, CH ₃ CN, ¹⁸ OOO, HNO ₃ , BrO, H ₂ O ₂ , SO ₂	N ₂ O, ¹⁸ OOO, HO ₂ , HNO ₃ , SO ₂ , O ¹⁷ OO	 ¹⁸000, ¹⁷000, HO₂, HNO₃, BrO, O¹⁷00
Mesospheric medium/low SNR	O ₃ , H ³⁷ Cl, wind, ¹⁸ OOO, H ₂ O ₂	O ₃ , H ³⁵ Cl, wind, ¹⁸ OOO, HO ₂ , SO ₂	HO ₂ , ¹⁸ 000, ¹⁷ 000, ClO
UT/LS	H_2O , Ice water content, O_3		
Extremely Low SNR	H_2CO , HOBr, CIONO ₂ , OCIO, CIOOCI, H_2SO_4	CH ₃ Cl, H ₂ CO, HOBr, ClONO ₂ , OClO, ClOOCl	COF_2 , $CIONO_2$, NO_2 , $OCIO$, CIOOCI

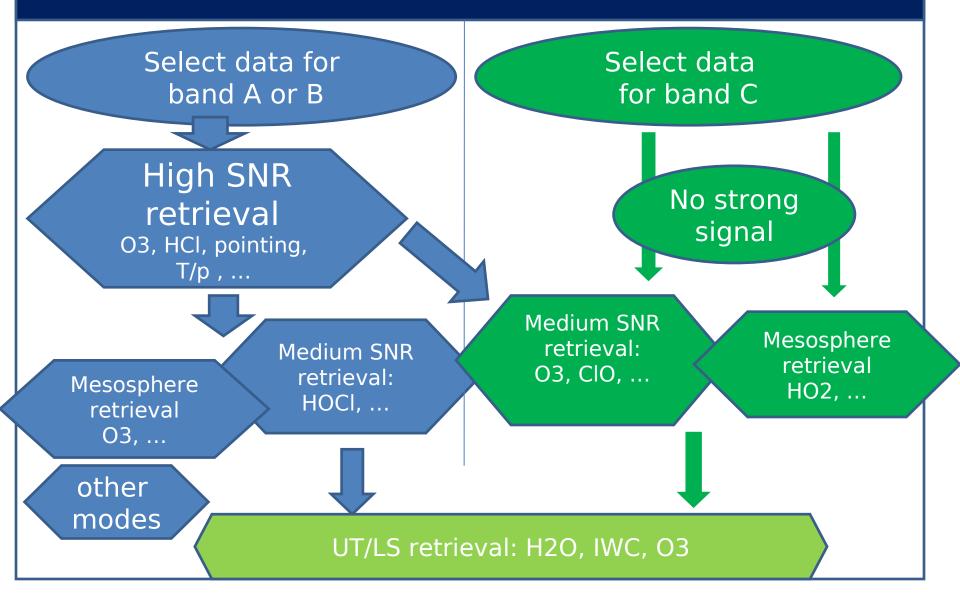
blue: single scan, red: daily average, green: monthly average, black: very challenging


Example of mesospheric products:

Altitude coverage: 50 - 96 km Vertical resolution: 4.5 km Single scan precision: 100 % **Daily average**: 10-20%

Altitude coverage: 64 - 80 km Vertical resolution: 8 - 12 km Single scan precision: 500 % **Monthly average**: 10%

The L2 research processing chain


AMATERASU:

Advanced Model for Atmospheric TeraHertz Radiation Analysis and Simulation

- Model that is being developed in NICT for simulating SMILES radiances and retrieve atmospheric parameters (level 2)
- General model (not only used for SMILES):
 - Applicable from micro-wave to IR spectral domains
 - Applicable for different observation geometries and atmospheres
 - Able to take into account clouds on the line of sight
 - Horizontal inhomogeneities along the line of sight

Retrieval strategy:

For each scan retrieve bands configuration: A+B, A+C, B+C

Some details about the chain

- 4 computers:
 - 1 management computer
 - 1 file server with high storage capability (Raid 5 system)
 - 2 processing computers with high CPU capabilities
- Un-interruptible power supply (battery pack)

• Software:

- Ubuntu Linux
- Torques/MAUI for batch processing
- MySQL database
- Python + additional libraries (calculation/visualization/database connection)
- AMATERASU code for L2 retrieval calculations

Conclusions

- A L2 research chain for JEM/SMILES is under development at NICT:
 - Same molecules as the operational chain will be produced, plus extra-products (UT/LS, mesosphere, extremely low SNR)
 - A first version of the retrieval strategy has been defined and a data processing chain is being installed in NICT
- A full error analysis will be carried out to estimate the accuracy and the precision of the research products before launch.
- Improvements of the retrieval strategy are already being investigated: joint AOS bands and pointing jitter retrievals, ...

Collaborations

- SMILES L2 team (JAXA/ISAS)
- SMILES instrument team (JAXA, NICT + Osaka prefecture university + Toho university)
- Chalmers University of Technology
- Luleå Technical University (Sweden)
- Jet Propulsion Laboratory (US)
- System Engineering Consultants (SEC), Tokyo

To use the SMILES data, please write a research announcement proposal (soon at http://smiles.tksc.jaxa.jp)