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Introduction

Magnetic fields are thought to play a
key role in coronal heating problems.

Therefore, connectivity between the
photospheric magnetic fields and their
counterparts in the upper atmosphere
is one of essential information.

The coordination of Hinode
observation with |IRIS observation
makes it possible to understand
the connectivity.
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Subject of this study

Emergence of a photospheric horizontal fields and their counterparts
(Shimizu et al. 2009)
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Remaining tasks

- Multi wavelength observation

The UV spectral data from the IRIS can be used with simultaneous
observations by Hinode/SOT. Counterparts in the upper atmosphere are
one of essential information in understanding how upper atmosphere
responds to evolution of magnetic field at the low atmosphere.

* Temporal evolution

Although there are many observations and studies about LBs, spectro-
polarimetric observations provide the evolution of magnetic fields in the

cadence longer than a few hours, which is much longer than typical time
scale of activities.



Observation

Target: NOAA Active Region 11836
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Temporal evolution of the magnetic fields
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Configurations of the magnetic fields
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Morphology of

the horizontal fields
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Properties of the up/down patches
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Schematics of the photosphere
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What is happening in the upper atmosphere?

Q-shaped flux tube emerges from below the cusp-like ambient fields.
Materials are flowed along the horizontal fields.
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Activities in the upper atmosphere
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Horizontal fields and brightening

September 1 August 31
(Horizontal fields are emerging) (Without horizontal fields)
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A bright feature can be seen in the LB on September 1. Location of the
feature is similar to the photospheric horizontal fields. In contrast, there
are neither the bright feature nor the horizontal fields on August 31.



Discussions|1]
Heating mechanisms

Magnetic
reconnection
:!: Cusp-like
y QQ ambient field
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When a horizontal flux tube emerges from below the photosphere,
the interaction between ambient vertical fields and newly

emerging horizontal fields may create current sheets and cause
magnetic reconnection.



Discussions|2]
Driving mechanisms of the photospheric flows
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These flows can be understood as a consequence of siphon flow
mechanism in case of magnetohydrostatic.

There is possibility that convection in inclined magnetic field geometries is a driver.
However, in that case, driver that accelerates the vigorous flows is still to be identified.




Summary

* Observed horizontal fields in a sunspot light
bridge have Q-loop structure.

* Rapid flows are excited along the horizontal
fields.

e The horizontal fields influence to heat the solar
atmosphere.
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Coronal heating by means of MHD waves
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There are many observational studies about MHD waves.
However, study which detects dissipating or exciting processes of
MHD waves is very rare.

Moreover, quantiative study with spectro-polarimetric observation will
be important in the future. (In anticipation of Solar-C)



Our idea for estimating
the dissipated energy of MHD waves

(1)SOT/SP can estimate poynting flux in the photosphere by using
techniques developed in previous study (Fujimura&Tsuneta (2009))

(2)With assumption of the magnetic field strength, we can use same
techniques to IRIS data. (In anticipation of Solar-C)

TR Chromospheric poynting flux  (2)

Chromosphere
These difference can be considered as

Photosphere — dissipated energy of MHD waves.

~ Photospheric poynting flux | (1)
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Review of Fujimura&Tsuneta(2009)

magnetic flux velocity intensity
6 1000 ~ 06 ; ; ; - 1.00
— =~ +2 . ’7
4 500} E Zr Solar-X:460
]
& e 2 Solar-Y:10’
E 800} Rt .8 o090}
O :'o) Y ROI
go 700 Qv N 0.85f
: >- :
. 600 : : : g . . g o0.80 : : .

g 0O 20 40 60 80 o 0O 20 40 60 80 g 0O 20 40 60 80
= time(min) time(min) s time(min)
g sorp™ 2 00008 -s
é‘ () g g 2.0x10 "
3 40 & g
3 %3 o.oooe-O g 1.5,(,0-5_0 _
¥ % s \'4
= < 0.0004 B ox100) RS
g = g They averaged physical

3 "D 0.0002f d 6| ]
& ‘°wm R VV\/\/\/\/ 5 s0m107 parameters of the

o . . .

B oMLl > ooooo L L0 . F. Y iy MMy pixels with strong CP in
e 2 4 681012 5 2 4 6 81012 F 2 4 6 8 10 12
g period(min) § period(min) 2. period(min) the ROI.
e )
& s”

They mentioned that these small fluctuations with same frequency

are products of MHD waves driven by p-mode oscillation.



We should note that there are two possibilities to reproduce
these observed aspects

(1)P-mode oscillation excites MHD waves
(Magnetic fields are oscillated)

(2)P-mode oscillation changes the line formation height
(Actually, magnetic fields are not oscillated)
¢ In the photosphere
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How to distinguish ?

*Phase relation is very important.

If oscillation is caused by opacity effect, phase difference
between B and I_should be 0° .

In previous study, by using inverse Fourier transform only to
strong peak, they checked phase relations and derived

Poynting flux.
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Our opinion

* Phase relation is very important to distinguish between
the real oscillation and the apparent oscillation (opacity

effect). However, we think that the
. We need to check

that using inverse Fourier transform only to strong peak is
reasonable or not.

* Moreover, there are some possibilities that we can obtain

new aspects of MHD waves from their waveform.
(ex. Processes of nonlinearization, attenuation etc...)

Therefore, we performed new observation on 2015/02/12
with 21 sec cadence.



Observations and data analysis
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Milne-Eddington inversion is used for deriving physical parameters.
We averaged physical parameters of the pixels with strong CP in the ROI.
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Phase relations
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|. and B 4 correlate positively - consistent to opacity effect

Note that the correlation coefficient is not so large.
There are some possibilities that influences of MHD waves are lurking.



Comparison to the previous study
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We apply Fourier transform to original profiles in the same way
as previous study.

Interestingly, the results show that only B, and v ;s have a
strong common peak. It means that I_does not oscillate with
same frequency as B4, namely, these are inconsistent to the
opacity effect.



Discussions

* P-mode oscillation does not maintain perfectly
constant frequency. Therefore, we think that
focusing only to specific frequency as previous

study may not be reasonable.

* |tis important to distinguish the opacity effect
and the real oscillation for estimating
dissipated energy of the MHD waves.



Interim summary

* Oscillating signals can be seen in B 4,V o5 Ic

* These phase relations are consistent to
opacity effect. This result is different from
previous study.

* Focusing only to specific frequency as ,,7,4:
&

previous study may not be reasonable. Yoo



