A brief introduction to helio- and asteroseismology

Takashi Sekii

Division of Solar and Plasma Astrophysics and Hinode Science Center NAOJ

#### Helio- and asteroseismology □ A quick overview What they are Why they are interesting What we have learned □ How do they work? More physical and mathematical details □ Some more recent results

#### A quick overview

Helio- and asteroseismology

- Investigation of the solar and stellar interiors based on their oscillations
  - The Sun and stars are not transparent to electromagnetic waves
  - They are transparent to 'waves'
  - Seismic approaches are the only way to study inner work of the Sun and stars

#### Helio- and asteroseismology Oscillations?

- Variable stars are known from ancient times and many of them are pulsating variables
- Since 1962, the Sun is also known to be a pulsating variable

Leighton et al (1962)'s discovery of the 5-minute oscillations

#### Global vs. Local □ Two main flavours of helioseismology Global helioseismology □ based on global eigenfrequencies □ for 'global' or highly symmetric structures Local helioseismology □ based on (for example) local travel times □ for localized measurements □ Asteroseismology can only be 'global'

What do we want to study? □ Is the standard solar model correct? Do we understand solar/stellar evolution processes? □ Ingredients of solar dynamo Differential rotation, meridional flow Convection □ How the internal processes are connected to observable surface phenomena Subsurface 'weather' Flux emergence processes

### Soundspeed inversion The depth of the convection zone is about

- 20 Mm, not 15 Mm
- The first major result from helioseismology



## Soundspeed inversion This modern model agrees with the 'observation' within a half per cent accuracy





#### Solar differential rotation Based of measurement of rotational shifts of eigenfrequencies



#### Tachocline A steep gradient in the rotation rate



#### Structure around a sunspot From time-distance method



#### A very well-known result but nobody is sure if this is correct

#### Double-cell meridional flow? □ Zhao et al. (2013)



### Supergranulation 'Divergent' flow signatures

Travel-time difference (inward/outward) maps (15-Mm scale)

Equatorial (Sekii et al. 2007)



#### Polar region (Nagashima et al. 2011)



Supergranulation □ Helioseismic analyses are finding out that supergranulation is a fairly 'shallow' phenomenon Duvall 1998 (MDI), Sekii et al 2007 (Hinode/ SOT)  $\sim$  10Mm deep, give or take □ Polar supergranules are smaller and deeper than their low-latitude counterparts? (Nagashima 2010)

#### Emerging flux detections Can we detect magnetic fluxes before their emergence?



#### Far-side imaging □ The other side of the sun





#### How do they work?

### Dopplergram movies



#### Dopplergram Dopplergram obtained by SOHO/MDI

-2km/s < v < 2km/s

Dominated by solar differential rotation



## Dopplergram By subtracting 45-min average we can filter out rotation and supergranulation



#### FSH decomposition Any scalar function on sphere can be expanded in spherical harmonics

$$f(\theta,\phi) = \sum_{lm} f_{lm} Y_l^m(\theta,\phi)$$

$$Y_l^m(\theta,\phi) = P_l^m(\cos\theta) e^{im\phi}$$

$$l: \text{ degree}$$

$$m: \text{ azimuthal order}$$

$$f(\theta,\phi): \text{ symmetric}$$

$$\Rightarrow f_{lm} \text{ indep't of } m$$

$$l = 20, m = 0$$

$$l = 20, m = 17$$

#### FSH decomposition

- For simplicity, we assume we observe the radial velocity (rather than the line-ofsight velocity)
- In spatial domain, the velocity field can be expanded in spherical harmonics

$$v(\theta,\phi,t) = \sum_{lm} A_{lm}(t) Y_l^m(\theta,\phi)$$

 $v(\theta, \phi, t)$  : radial velocity field  $Y_l^m(\theta, \phi)$  : spherical harmonic function with degree l and azimuthal order m

FSH decomposition
□ In time domain, Fourier decomposition comes in handy

$$A_{lm}(t) = \int a_{lm}(\omega) e^{i\omega t} d\omega$$

Then we have Fourier-Spherical-Harmonic decomposition of the velocity field

$$v(\theta,\phi,t) = \sum_{lm} \int d\omega \, a_{lm}(\omega) Y_l^m(\theta,\phi) e^{i\omega \omega}$$

$$a_{lm}(\omega) = \frac{1}{2\pi} \int d\Omega dt \ v(\theta, \phi, t) Y_l^{m^*}(\theta, \phi) e^{-i\omega t}$$

#### The $k-\omega$ diagram $\Box$ The power spectrum

$$p_l(\omega) = \frac{1}{2l+1} \sum_m |a_{lm}(\omega)|^2$$



#### The $k-\omega$ diagram $\Box$ The power spectum

$$p_l(\omega) = \frac{1}{2l+1} \sum_m |a_{lm}(\omega)|^2$$

- The characteristic 'ridge' structure
  - A full explanation would be too lengthy, but it is a signature of acoustic eigenoscillations

p-mode oscillations



#### The $k-\omega$ diagram





What can helioseismology infer?
A brief answer: whatever is determining the eigenfrequencies has a chance
What determines the eigenfrequencies?
That is to say, what kind of force is working on plasma that constitutes the sun?

- Gas pressure
- Gravity

□ Here we are neglecting rotation and magnetic fields

#### Ray theory

- At the high-frequency ('asymptotic') limit the propagation of sound wave in the sun can be well represented by a ray
- A ray path in the sun is not straight because of the variation in soundspeed





#### Fluid dynamical equation A more precise treatment requires perturbing fluid dynamic equations

$$\begin{split} \omega^2 \rho \vec{\xi} &= -\nabla (\rho c^2 \nabla \cdot \vec{\xi}) - \nabla (\nabla P \cdot \vec{\xi}) + \frac{\nabla P}{\rho} \nabla \cdot (\rho \vec{\xi}) \\ &+ \rho \nabla \left[ G \int \frac{\nabla \cdot \left\{ \rho(\vec{r}') \vec{\xi}(\vec{r}') \right\}}{|\vec{r} - \vec{r}'|} dV' \right] \end{split}$$

 $\vec{\xi}(\vec{r})$ : displacement vector the fluid element at position  $\vec{r}$  the factor  $e^{i\omega t}$  taken out is now in position  $\vec{r} + \vec{\xi}(\vec{r})$ 

#### Ray theory

- □ Modes with smaller ℓ values penetrate deeper
- Different modes
   'samples' different
   parts of the sun
- This is one reason why helioseismology works



# Rotation of the sun Rotation of the sun affects the wave propagation primarily by advection

also by Coriolis force



#### **Rotational splitting** 20 $\Box$ As a result, the solar eigenfrequencies are shifted 10 $|a_{lm}(\omega)|^2$ -10the gradient $\propto$ rotational frequency -203060 3100 3040 3080

Hinode seminar 19 Nov 2014

3120

Frequency,  $\mu$ Hz

Local helioseismology
Forget the global modes
Direct measurement of subsurface propagation of waves



#### Time-distance method

#### □ Cross-correlation function





#### *C* is large around $\tau \approx T_1$

#### Time-distance method A solar time-distance diagram



Cross-correlation function

$$C(\Delta,\tau) = \int_{|\vec{r_1} - \vec{r_2}| = \Delta} \psi^*(\vec{r_1}, t) \psi(\vec{r_2}, t + \tau) d\vec{r_1} d\vec{r_2} dt$$

Travel-time perturbation

$$\tau \approx \int_{\Gamma} \frac{dl}{c} = \int_{\Gamma} \frac{\vec{k} \cdot d\vec{l}}{\omega}$$
  
and flow

Soundspeed perturbation velocity velocity lead to

$$\delta \tau \approx \frac{1}{\omega} \int_{\Gamma} \delta \vec{k} \cdot d\vec{l} \approx -\int_{\Gamma} \frac{\delta c}{c^2} dl - \int_{\Gamma} \frac{\vec{v} \cdot d\vec{l}}{c^2}$$



#### Some more recent results

#### Double-cell meridional flow? □ Zhao et al. (2013)



## Convective velocity Hanasoge, Duvall & Sreenivasan (2012) Upper limits derived from non detections Convection not so fast?



KIC11145123 A late A star Kepler magnitude  $K_p = 13$ Huber et al. (2014) Effective temperature:  $T_{eff} = 8050 \pm 200$  K Surface gravity: log g = 4.0±0.2 (g in cgs)

#### Oscillations of KIC11145123 Kepler quarters 0–16, long cadence, 1340-day long



#### Oscillations of KIC11145123 Kepler quarters 0–16, long cadence, 1340-day long



P-mode range

#### G-mode range

#### Modelling KIC 11145123 The best model $M=1.46M_{\odot}$ Has a convective core (r~0.05R) Z=0.01, Y=0.36 Helium abandunce high Too faint and too cool for the KIC parameters

#### Rotational shift of frequencies

| 1                                                                   | n   | splt(c/d) | dsplt(c/d) |   |     |           |           |
|---------------------------------------------------------------------|-----|-----------|------------|---|-----|-----------|-----------|
| 1                                                                   | -31 | 0.0047449 | 0.0000026  |   |     |           |           |
| 1                                                                   | -30 | 0.0047942 | 0.0000111  |   |     |           |           |
| 1                                                                   | -29 | 0.0047512 | 0.0000071  |   |     |           |           |
| 1                                                                   | -28 | 0.0047692 | 0.0000034  |   |     |           |           |
| 1                                                                   | -27 | 0.0047697 | 0.0000014  |   |     |           |           |
| 1                                                                   | -26 | 0.0047566 | 0.0000011  |   |     |           |           |
| 1                                                                   | -25 | 0.0047815 | 0.0000015  | 1 | -22 | 0.0047847 | 0.0000044 |
| 1                                                                   | -24 | 0.0047534 | 0.0000023  | 1 | -21 | 0.0048026 | 0.0000156 |
| 1                                                                   | -23 | 0.0047865 | 0.0000112  | 1 | -20 | 0.0047939 | 0.0000181 |
| _                                                                   |     |           |            | 1 | -19 | 0.0047500 | 0.0000252 |
|                                                                     |     |           |            | 1 | -18 | 0.0047837 | 0.0000165 |
|                                                                     |     |           |            | 1 | -17 | 0.0047745 | 0.0000296 |
| $\partial \omega_{nlm} = m(1 - C_{nl}) \int K_{nl}(r) \Omega(r) dr$ |     |           |            | 1 | 3   | 0.0101560 | 0.0000025 |
|                                                                     |     |           |            | 1 | 4   | 0.0085460 | 0.0000049 |
|                                                                     |     |           |            | 1 | 5   | 0.0102570 | 0.0000599 |

#### Nearly a rigid rotator

- The g-mode splittings show very small scattering
  - $\Delta f_q = 0.0047562 \pm 0.000023 \text{ d}^{-1}$  (average)
  - Implies a rigid rate of about 0.0095 d<sup>-1</sup> (in rotational frequency)
    - $\Box$  C<sub>nl</sub> $\rightarrow$ 1/2 for dipole g modes
- □ The p-mode shifts are more or less consistent with this rate too □  $C_{nl} \rightarrow 0$  for p modes

□ However...

#### Rotational shift of frequencies



#### Core vs envelope

- □ The envelope seems to be rotating slightly faster since...
  - $\Delta f_q = 0.0047562 \pm 0.0000023 \text{ d}^{-1}$  (average)
  - $\Delta f_{\rm p} = 1.0101560 \pm 0.0000025 \ d^{-1} \ (l=1, n=3)$

□ Note that

- $\Omega_{\rm p}/2\pi > \Delta f_{\rm p}$  (lower bound)
- $\Omega_{\rm g}/2\pi < 2\Delta f_{\rm g}$  (upper bound)

Two-zone modelling
□ Fitting the following form

$$\Omega(r) = \begin{cases} \Omega_1 & (0 \le r \le r_b) \\ \Omega_2 & (r_b \le r \le R) \end{cases}$$

Image: Image: Image: mail constraints of the p- and g-averaged splittings

#### Two-zone modelling



#### KIC 11145123 results

- A terminal-age main-sequence A star
   KIC11145123 exhibit both p-mode oscillations
   and g-mode oscillations
- This permits us to examine the core rotation and the envelope rotation separately
  - The star is almost a rigid rotator
  - The envelope however is rotating slightly faster 'on average'
- There are implications on angular momentum transport mechanism --- waves?
  - Strong mechanism inferred from red-giant results too

#### Summary

- Helioseismology is about measuring physical quantities *inside* the sun, based on wave/oscillation
  - Global mode inversions have revealed the internal structure as well as the internal differential rotation
  - Local helioseismology, still an immature discipline, promises to tell us more about inhomogeneous static and dynamic structure of the sun
- □ ...and then to asteroseismology!