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AIA is not just Another Imaging Assembly. It was 
designed with the promise of thermal diagnostics.



The Atmospheric Imaging Assembly (AIA, Lemen et al. 2012; 
Boerner et al. 2012) instrument onboard NASA’s Solar 
Dynamics Observatory (SDO, Pesnell et al. 2012) is a suite of 
four normal-incidence reflecting telescopes that image the Sun 
in seven EUV channels, two UV channels and one visible 
wavelength channel.  
!
The aim of this and many other studies is to extract thermal 
information about the Sun’s optically thin corona using the EUV 
observations. The calibrated (i.e. dark-subtracted, flat-fielded 
and exposure time normalized) count rate yi in the i-th EUV 
channel is related to the thermal distribution of coronal plasma 
by:
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4. EMISSION MEASURE DETERMINATION USING AIA

4.1. Statement of the problem

AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:

yi =
Z 1

0

Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is
the temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T ) =

R1
0

n

2

e(T )dz is the di↵erential
emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron number density of
plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins, so that

yi =
nX

j=1

Z Tj+�Tj

Tj

Ki(T )DEM(T )dT, (2)

where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).

Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so

yi =
nX

j=1

KijEMj ,where (3)

EMj =
Z Tj+�Tj

Tj

DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj +�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .

For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in
emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that
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yi,obs

� yi,model

�i

◆
2

(6)

is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy

where Ki(T) is the temperature response function (see next 
slide):
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Fig. 1. Plot of DEM curves for coronal hole, quiet Sun, active region
and flare plasma (see text for references).

and AR spectra. Density values of Ne = 2 × 108 cm−3,
Ne = 5 × 108 cm−3 and Ne = 5 × 109 cm−3 were used in cal-
culating the CH, QS and AR spectra respectively. These are the
same density values as those used to calculate the contribution
functions for the lines which were used to constrain the DEM
curves for the CH, QS and AR cases. For the flare spectrum
a value of Ne = 1 × 1011 cm−3 and the solar coronal abun-
dances of Feldman et al. (1992) were used. The use of either
photospheric or coronal abundances in calculating the synthetic
spectra reflects the original use of either photospheric or coronal
abundances in generating the DEM curves. These synthetic spec-
tra were then convolved with the effective area of each channel.
The effective areas were obtained from P. Boerner (2009, private
communication), with the exception of the 171 Å and 335 Å
channels for which updated versions were used obtained from
Solarsoft (12 July, 2010).

3. Results
Table 1 lists those spectral lines which contribute more than 3%
to the total emission in each channel for CH, QS, AR and flare
plasma. Also included is the fractional contribution of the con-
tinuum emission for any case where the continuum contributes
more than 3% to the total emission in a channel. Synthetic spec-
tra for each of the channels are displayed in Fig. 2 - 8. For every
channel each spectrum has been divided by the peak intensity
of the strongest spectrum. Weaker spectra have been scaled by
factors indicated in each figure.

The 94 Å channel is expected1 to observe the Fe XVIII 93.93Å
line [log T[K] ∼ 6.85] in flaring regions. For both AR and flare
plasma (see Fig. 2) the dominant contribution comes from the
Fe XVIII 93.93 Å line. However, for the CH and QS spectrum (see
Fig. 2) the dominant contribution comes from the Fe X 94.01 Å
line [log T ∼ 6.05].

In flaring regions the 131 Å channel is expected1 to observe
the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines. However, for
the flare spectrum (see Fig. 3) the dominant contribution comes
from the Fe XXI 128.75 Å line [log T ∼ 7.05]. The combined con-
tribution of the Fe XX 132.84 Å and Fe XXIII 132.91 Å lines is less
than ten percent of the total emission. For CH observations the
131 Å channel is expected1 to be dominated by Fe VIII lines [log
T ∼ 5.6]. From our simulations, the dominant contribution for
CH and QS plasma (see Fig. 3) does come from Fe VIII lines, but
with a significant contribution from continuum emission. For the

Table 1. Predicted AIA count rates.

Ion λ T ap Fraction of total emission
Å K CH QS AR FL

94 Å Mg VIII 94.07 5.9 0.03 - - -
Fe XX 93.78 7.0 - - - 0.10
Fe XVIII 93.93 6.85 - - 0.74 0.85
Fe X 94.01 6.05 0.63 0.72 0.05 -
Fe VIII 93.47 5.6 0.04 - - -
Fe VIII 93.62 5.6 0.05 - - -
Cont. 0.11 0.12 0.17 -

131 Å O VI 129.87 5.45 0.04 0.05 - -
Fe XXIII 132.91 7.15 - - - 0.07
Fe XXI 128.75 7.05 - - - 0.83
Fe VIII 130.94 5.6 0.30 0.25 0.09 -
Fe VIII 131.24 5.6 0.39 0.33 0.13 -
Cont. 0.11 0.20 0.54 0.04

171 Å Ni XIV 171.37 6.35 - - 0.04 -
Fe X 174.53 6.05 - 0.03 - -
Fe IX 171.07 5.85 0.95 0.92 0.80 0.54
Cont. - - - 0.23

193 Å O V 192.90 5.35 0.03 - - -
Ca XVII 192.85 6.75 - - - 0.08
Ca XIV 193.87 6.55 - - 0.04 -
Fe XXIV 192.03 7.25 - - - 0.81
Fe XII 195.12 6.2 0.08 0.18 0.17 -
Fe XII 193.51 6.2 0.09 0.19 0.17 -
Fe XII 192.39 6.2 0.04 0.09 0.08 -
Fe XI 188.23 6.15 0.09 0.10 0.04 -
Fe XI 192.83 6.15 0.05 0.06 - -
Fe XI 188.30 6.15 0.04 0.04 - -
Fe X 190.04 6.05 0.06 0.04 - -
Fe IX 189.94 5.85 0.06 - - -
Fe IX 188.50 5.85 0.07 - - -
Cont. - - 0.05 0.04

211 Å Cr IX 210.61 5.95 0.07 - - -
Ca XVI 208.60 6.7 - - - 0.09
Fe XVII 204.67 6.6 - - - 0.07
Fe XIV 211.32 6.3 - 0.13 0.39 0.12
Fe XIII 202.04 6.25 - 0.05 - -
Fe XIII 203.83 6.25 - - 0.07 -
Fe XIII 209.62 6.25 - 0.05 0.05 -
Fe XI 209.78 6.15 0.11 0.12 - -
Fe X 207.45 6.05 0.05 0.03 - -
Ni XI 207.92 6.1 0.03 - - -
Cont. 0.08 0.04 0.07 0.41

304 Å He II 303.786 4.7 0.33 0.32 0.27 0.29
He II 303.781 4.7 0.66 0.65 0.54 0.58
Ca XVIII 302.19 6.85 - - - 0.05
Si XI 303.33 6.2 - - 0.11 -
Cont. - - - -

335 Å Al X 332.79 6.1 0.05 0.11 - -
Mg VIII 335.23 5.9 0.11 0.06 - -
Mg VIII 338.98 5.9 0.11 0.06 - -
Si IX 341.95 6.05 0.03 0.03 - -
Si VIII 319.84 5.95 0.04 - - -
Fe XVI 335.41 6.45 - - 0.86 0.81
Fe XIV 334.18 6.3 - 0.04 0.04 -
Fe X 184.54 6.05 0.13 0.15 - -
Cont. 0.08 0.05 - 0.06

The count rates are normalised for each channel. Coronal hole
(CH), quiet Sun (QS), active region (AR) and flare (FL) plasma.

a Tp corresponds to the log of the temperature of maximum abun-
dance.
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Let the temperature range be divided into n neighboring bins, 
so that: 
!
!
where the j-th temperature bin has range T ∈ [Tj,Tj+∆Tj). 
Assuming that Ki(T) is piecewise constant in each temperature 
bin, we have:

where DEM(T) is the differential emission measure (in units of 
cm-5 K-1) of plasma along the line-of-sight. ne(T) is the electron 
number density of plasma at temperature T. The challenge is to 
solve for DEM(T) given a set of EUV measurements y.
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4. EMISSION MEASURE DETERMINATION USING AIA

4.1. Statement of the problem

AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:

yi =
Z 1

0

Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is
the temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T ) =

R1
0

n

2

e(T )dz is the di↵erential
emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron number density of
plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins, so that

yi =
nX

j=1

Z Tj+�Tj

Tj

Ki(T )DEM(T )dT, (2)

where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).

Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so

yi =
nX

j=1

KijEMj ,where (3)

EMj =
Z Tj+�Tj

Tj

DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj +�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .

For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in
emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that

�

2 =
mX

i=1

✓
yi,obs

� yi,model

�i

◆
2

(6)

is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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given by EMj .

For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in
emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that

�

2 =
mX

i=1

✓
yi,obs

� yi,model

�i

◆
2

(6)

is minimized. Here yi,obs

is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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4.1. Statement of the problem

AIA EUV observations can be related to the physical properties of optically thin coronal plasma as an integral over
temperature space:

yi =
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Ki(T ) DEM(T )dT, (1)

where yi is the exposure time-normalized pixel value in the i-th AIA channel (in units of DN s�1 pixel�1), Ki(T ) is the
temperature response function (in units of DN cm5 s�1 pixel�1) and DEM(T )dT =
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e(T )dz, where DEM(T ) is
called the di↵erential emission measure (in units of cm�5 K�1) of the plasma along a line-of-sight. ne(T ) is the electron
number density of plasma at a certain temperature T . Let the temperature range be divided into n neighboring bins,
so that
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Ki(T )DEM(T )dT, (2)

where the j-th temperature bin has range T 2 [Tj , Tj + �Tj). The aim is to use AIA measurements to retrieve the
emission measure distribution (either in di↵erential or integral form).
Assume that Ki(T ) = Kij is piecewise constant in each j-th temperature bin, so

yi=
nX

j=1

KijEMj ,where (3)

EMj =

Z Tj+�Tj

Tj

DEM(T )dT. (4)

With a priori knowledge about the form of DEM(T ) over the range [Tj , Tj+�Tj), it is in principle possible to drop the
assumption that Ki(T ) be piecewise constant and define a DEM-weighted temperature response function. However,
we adopt this assumption since such information is not available.
Eq. (3) can be written in the following form

y = Kx, (5)

where K is an m⇥ n matrix with components Kij , y is an m-tuple corresponding to measurements by the AIA EUV
channels (m = 6 when using the 94, 131, 171, 193, 211 and 335 Å channels) and x is an n-tuple with components
given by EMj .
For m < n (i.e. more than 6 temperature bins), Eq. (5) is underdetermined. This is a well-known problem in

emission measure inversions and thus far, researchers have attempted to tackle this problem using a least-squares
approach. That is, the DEM solution is chosen to be one such that
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is minimized. Here yi,obs is the observed intensity value for i-th AIA channel, yi,model

is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
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DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.
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We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.
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in an a�ne subspace of Rn. The challenge is to select a solution within this subspace that most faithfully represents
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and



The above is a matrix equation of the form y = Kx, where  
• K is an m x n response matrix*, with each row corresponding to the 

temperature response function of one AIA channel 
• y is an m-tuple corresponding of AIA count (rates), and  
• x is an n-tuple with components EMj.  
!
The He II line in the 304 Å channel is not well-modeled by CHIANTI 
(Warren, 2005, ApJ 157, 147) so it is usually not used for DEM analysis. 
So m = 6 for AIA. Usually we want more than 6 temperature bins. For m 
< n, the matrix equation y = Kx represents an underdetermined system. 
!
*Matrix elements depends on basis functions used for computing the 
integral
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is the predicted value for a given
(D)EM model and �i is the uncertainty for the i-th channel. The benefit of this type of least-squares approach is that
it results in Euler-Lagrange equations that can be used to seek (global or local) minima. This approach is ideal in
overdetermined systems (i.e. m > n) where it is known that no single model will reproduce all n measurements (linear
regression through three or more non-colinear points is one example). However, for underdetermined systems such
an approach is subject to the perils of overfitting. To mitigate this, regularization terms are sometimes added to the
definition of �

2 to impose additional constraints such as smoothness in the solution. Other methods impose that the
DEM solution have a certain shape (e.g. a Gaussian or power-law distribution) so that the number of free parameters
is less than m.

4.2. Sparse Emission Measure Solution

We address the inverse problem using a di↵erent approach. We do so by applying lessons learned from the field of
compressed sensing. Compressed sensing is concerned with the recovery of signals where the number of measurements
is (much) less than the number of components in the reconstructed signals.

In an underdetermined linear system such as given by Eq. (5), the family of solutions satisfying the equation resides
in an a�ne subspace of R

n. The challenge is to select a solution within this subspace that most faithfully represents
the underlying scenario. In a series of papers on solutions to underdetermined linear systems Candes & Tao (e.g. 2006,
2007) showed that the assumption of sparsity often leads to a better solution than a least-squares/minimum energy
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!
Function to minimize: | y - Kx |2 or |(y - Kx)/𝞂|2 
!
Basically, minimize difference between observed and predicted 
counts. The benefits of a least-squares approach is that it leads to 
Euler-Lagrange equations that can be used to seek (global or local) 
minima.  
!
For an overdetermined system, we know no single model will fit all 
the data. So 𝛘-squared minimization is ideal. However, for 
underdetermined systems such an approach can be subject to the 
perils of overfitting.  
!
Usual way to get around this: 
P a r a m e t e r i z a t i o n : e . g . G u e n n o u e t a l ( 2 0 1 2 a , b ) , 
xrt_dem_iterative2.pro (M. Weber in SSW, see also Cheng et al 
2012) 
Regularization: e.g. Hannah & Kontar (2012), Plowman et al. (2013)

Usual Approach: 𝛘-squared Minimization



We address the inverse problem using an approach different 
than chi-squared minimization. The set of solutions satisfying 
the underdetermined matrix equation y = Kx lies in an affine 
subspace of Rn.  We pick the solution x# within this subspace 
such that:

6

approach. To be specific, the most sparse solution is one that

minimizes k ~x kl0 subject to K~x = ~y. (7)

Here k ~x kl0 is the l-zero norm of ~x, which is just the number of non-zero components of ~x. Since there is no e�cient
algorithm for solving this l-zero minimization problem, Candes & Tao (2006) instead proposed that one should solve
the corresponding l-1 minimization problem, namely

minimize k ~x kl1 subject to K~x = ~y, (8)

where k ~x kl1=
nP

j=1

k xj k. This is the underpinning of our approach to tackling the EM inversion problem. Since

the objective function is convex, algorithms developed for convex optimization can be used to solve for ~x. In practice,
uncertainties in the instrument response matrix (Kij) as well as in the measurements (~y) means that the sought-after
solution may not necessarily satisfy Eq. (5). Furthermore, for EMs we must impose that the solution be positive
semidefinite (i.e. EMj � 0). So our method solves the following linear program:

minimize k ~x kl1 subject to K~x~y + ~⌘, (9)

K~x�max(~y � ~⌘, 0), (10)

~x� 0. (11)

The inequality conditions (13) and (14) provide some tolerance for the solution to deviate from satisfying Eq. (5). For
the implementation we choose ⌘j = 2

p
yj . Other than the problem as stated by (13) - (14), no other conditions (e.g.

the shape of the EM curve) are imposed.

minimize
nX

j

xj subject to K~x = ~y, ~x � 0. (12)

minimize
nX

j

xj subject to K~x~y + ~⌘, , ~x � 0, (13)

K~x�max(~y � ~⌘, 0). (14)

Cheung et al. 2015: The Sparse Solution

The linear program above finds a solution that minimizes the 
L1-norm of the solution vector (c.f. Candes 2006). This is not 
chi-squared minimization. 
If K is the response function sampled by Dirac Delta functions at 
specific temperatures, this is equivalent to minimizing the total 
EM. If other basis functions are used, there is no simple 
corresponding physical interpretation. 
!
!



We are unaware of physical principles pertaining to 
coronal plasma that motivate the optimization problem 
posed above. However, this choice has some important 
benefits: 
1)It does not overfit (consistent with the principle of 

parsimony,  i.e. Ockham’s Razor). 
2)It ensures positivity of the solution (if solutions 

exist). 
3)It is an L1-norm minimization problem, so we can use 

standard techniques from compressed sensing (c.f. 
Candes & Tao 2006). 

  BTW the L1-norm of a vector x = 𝝨 |xi| 
4) Speed: O(104) solutions / sec with single IDL thread. 

The Sparse Solution

See Asensio Ramos & De La Cruz Rodriguez (2015) for application of related 
techniques to 2D coupled Stokes inversion.  



In practice, measurement uncertainties imply that the 
equality y = Kx may not be satisfied. So our method 
solves the followed modified linear program:
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The vector η is a measure of the uncertainty in the 
count rate and provides tolerance for the predicted 
counts (Kx) to deviate from the observed values (y). To 
enforce positive counts the lower bound is set to max(y-
η, 0). 

Handling noise
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APPENDIX

QUADRATURE SCHEME

Let i = 1, 2, ...,m denote the index over a set of wavelength band channels and/or line spectra. Let the DEM function
be written in terms of a set of positive semidefinite basis functions {bj(log T ) � 0 | k = 1, 2, ..., l}, viz.

DEM(log T ) =
lX

k=1

bk(log T )xk, (A1)

with quadrature coe�cients xk � 0. Approximating the integrals in equation (1) as sums in log T space, we have

yi =
nX

j=1

lX

k=1

KijBjkxk� log T, (A2)

where j = 1, 2, ..., n is the index over temperature bins, Kij = Ki(log Tj) and Bjk = bk(log Tj). The response matrix
K = (Kij) has dimensions m ⇥ n. The basis matrix B = (Bjk) has dimensions n ⇥ l, with the k-th column vector
corresponding to the k-th basis function bk(log Tj). Defining the dictionary matrix D = KB, the set of integral
equations (1) can be written in matrix form:

~y = D~x, (A3)

where the sought-after solution vector ~x is an l-tuple with components xk� log T (k = 1, 2, ..., l). When the number
of basis functions exceeds the number of image channels (i.e. l > m), the linear system Eq. (A3) is underdetermined.
For the results in this paper, we use an equidistant grid in log T with � log T = 0.1 ranging from log T = 5.5 to 7.5

(i.e. n = 21). Over this temperature grid, the set of Dirac-delta basis functions {bDirac

k | k = 1, ..., n} is

b

Dirac

k (log Tj)=1, if log Tj = log Tk, (A4)

=0, otherwise. (A5)

Recall that the basis matrix B consists of column vectors corresponding to basis functions. So for the set of Dirac-delta
functions BDirac = I (the identity matrix).
In addition to Dirac-delta functions, we also use basis functions consisting of truncated Gaussians. Each Gaussian

function of width a generates a set of basis functions {bak | k = 1, ..., n}, where

b

a

k(log Tj)=exp


� (log Tj � log Tk)2

a

2

�
, if | log Tj � log Tk|  1.8a. (A6)

=0, otherwise. (A7)

The Gaussian basis functions are truncated (i.e. set to zero) for values of log Tj outside the temperature grid used
for inversions. The corresponding basis matrix for this set is denoted Ba. Di↵erent sets of basis functions can be
combined by concatenating their associated basis matrices. For the inversions shown here, we use the combined basis
matrix

B =
�
BDirac|Ba=0.1|Ba=0.2|Ba=0.6

�
. (A8)

Note the individual Gaussian basis functions are not normalized by their sums (i.e. all have maximum value of unity at
their peaks). So given multiple solutions that equally fit the data, the method will prefer a solution consisting of a single
broad Gaussian over solutions consisting of multiple narrow Gaussians (and/or Dirac-delta functions). Empirically,
we find the choice of not normalizing the Gaussian basis functions results in better inversions results (more on this
below). Because n = 21, B as indicated above (see Fig. 15 for a graphical representation) has dimensions 21 ⇥ 84
and D has dimensions m ⇥ 84. With six AIA channels, m = 6. Even when AIA is augmented by XRT or EIS data,
m ⌧ 84. This makes Eq. (A3) a highly underdetermined system, which we solve by the method of basis pursuit (see
section 3).
Seeking to solve this underdetermined system is the same as the following geometric problem. Suppose we aim to

express some given column vector ~y (of dimension m) as the linear combination of members drawn from a family of

column vectors. Let this family of column vectors be denoted {~dk | k = 1, ..., l}. The goal is to find coe�cients xk

such that ~y =
Pl

k=1

xk
~

dk, which is equivalent to the linear system (A3) if the dictionary matrix D is constructed by

concatenating the ~

dk’s side by side. Because l > m, {~dk | k = 1, ..., l} is an overcomplete set of possible basis vectors
(i.e. dictionary) for building up ~y. So the non-uniqueness of a DEM solution satisfying Eq. (A3) is the same as the
multiplicity of ways to find a basis for ~y. Basis pursuit addresses this by seeking a solution that minimizes the L1-norm
|~x|

1

. In other words, basis pursuit finds the most sparse representation of ~y from an overcomplete dictionary D (Chen
et al. 1998).
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In	 practice	 we	 solve	 this	 ➜



Guennou et al (2012) reported that when the input gaussian is 
moderately wide (0.3 log Te, right panel), AIA 6-channel 
inversions yield spurious temperatures.

The Astrophysical Journal Supplement Series, 203:26 (14pp), 2012 December Guennou et al.

(a)

(b)

(d)

(c)

(f)

(g)

(e)

Figure 5. Same as Figure 4, but with a plasma DEM width increased to σP = 0.3 log Te . Many perturbations, already visible in Figure 4, are amplified: the distribution
is wider, irregular, and the diagonal structure disappeared (see panel (a)). The presence of multiple solutions of comparable probabilities is increased for a large range
of plasma temperatures T P

c , leading to very different estimated T I
c from the input T P

c . The probability map P (T I
c |T P

c ) can help us to properly interpret the inversion
result, taking into account the secondary solutions and providing their respective probability.

panels (b) and (c). Therefore, the inversion results T I
c contain no

information on the plasma central temperature T P
c . This is illus-

trated by the lack of structure in the probability map P (T P
c |T I

c )
of panel (e). Profile (g) shows that for T I

c = 1.5 × 106 K, the
distribution of T P

c extends over entire the temperature range.

2.3. Interpretation

We have shown that as the width of the plasma DEM
increases, multiple solutions to the isothermal inversion appear.
This phenomenon has been already mentioned by Patsourakos
& Klimchuk (2007), using triple-filter TRACE data. After a
proper treatment of the uncertainties, the authors found that their
observations of coronal loops were consistent with both a high
(≈1.5 × 106 K) and a low (≈5 × 105 K) isothermal plasma
temperature. They correctly concluded that without a priori
knowledge of the physical conditions in these loops, they could
not rule out the cool plasma solutions. Even though we used
six bands, multiple solutions appear anyway with increasing
plasma width. In addition, as we have seen in Paper I, multiple
solutions can exist even with an isothermal plasma if only a
limited number of bands is available. This is another illustration
of the similar effects of errors and multithermality.

The isothermal temperature solutions become progressively
decorrelated from the plasma central temperature as the width
of the DEM increases. For very large DEMs (Figure 6), the
inversion process yields exclusively either 3 × 105 K or 106 K
whatever the plasma T P

c . These two temperatures correspond to

the preferential locations of the minima shown in the criteria of
Figure 3. This is a generalization of the phenomenon analyzed
by Weber et al. (2005) in the simpler case of the TRACE 19.5
over 17.3 nm filter ratio. The authors showed that in the limit of
an infinitely broad DEM, the band ratio tends to a unique value
equal to the ratio of the integrals of the temperature response
functions. Furthermore, they showed that as the width of the
DEM increases, the temperature obtained from the band ratio
becomes decorrelated from the DEM central temperature. We
have found a similar behavior in the more complex situation
of six bands. This is not, however, an intrinsic limitation of
AIA. We can predict that the same phenomenon will occur
with any number of bands or spectral lines. Indeed, for an
infinitely broad DEM, since the observed intensities are equal
to the product of the total EM by the integral of the response
functions (Equation (2)), they are independent from the plasma
temperature. Therefore, the inversion will yield identical results
for any plasma temperature T P

c , whatever the number of bands
or spectral lines.

2.3.1. Defining Isothermality

As already noted in Section 2.1 and in Figure 2, larger DEM
widths correspond to larger squared residuals. From Paper I, the
distribution of residuals to be expected for an isothermal plasma
is known. Examining, then, the residuals for the solutions given
in the probability maps of Section 2.2, the solutions may not
all be statistically consistent with the isothermal hypothesis. We
will thus analyze the distribution of residuals to define rigorously
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(a)

(f)

(g)

(c)

(d)

(b)

(e)

Figure 4. Maps of probabilities considering a Gaussian DEM plasma ξP = ξgau having a narrow thermal distribution of σP = 0.1 log Te , obtained by 5000 Monte
Carlo realizations of the random and systematics errors nb and sb, and investigating the isothermal solutions. (a) Probability map P (T I

c |T P
c ), vertically reading. The

central temperature T I
c resulting from the inversion is presented whatever the total emission measure EMI . ((b) and (c)) Probability profiles of T I

c for plasma central
temperatures T P

c = 1.5 × 106 and 7 × 106 K (vertical lines in panel(a)). (d) Total probability of obtaining T I
c whatever T P

c (see Section 1 and Section 2.1 of Paper I).
(e) Vice versa, probability map P (T P

c |T I
c ), horizontally reading, inferred by means of Bayes’ theorem using P (T I

c |T P
c ) and P (T I

c ). ((f) and (g)) Probability profiles
of T P

c knowing that the inversion result is, from top to bottom, 7 × 106 and 1.5 × 106 K.

case of an isothermal plasma (see Figure 6 of Paper I), the
distribution is wider, irregular, and deviations from the diagonal
greater than its local width are present. As shown by panel (d)
and the nodosities in the map (a), the unconditional probability
of obtaining a result T I

c is nonuniform, meaning that some
inverted temperatures are privileged whereas others are unlikely.
Compared with Figure 6 of Paper I, profile (b) shows that the
probability of secondary solutions at T P

c = 1.5 × 106 K is
increased with respect to the isothermal case. The apparition of
these two solutions is illustrated in the bottom row of Figure 2.
The bottom right panel corresponds to a realization of the errors
yielding a solution close to the diagonal, while the bottom left
panel of the same figure illustrates a case where the absolute
minimum of the criterion is located at low temperature. Using
the map of P (T P

c |T I
c ), it is, however, possible to correctly

interpret the low-temperature solutions as also compatible with
1.5 × 106 K plasma (profile (g)).

In Figure 5, the plasma DEM width is increased to σP =
0.3 log Te. As a result, the above-described perturbations
with respect to the isothermal plasma case are amplified. The
diagonal structure has almost disappeared, with discontinuities
and reinforced and more diffuse nodosities. Multiple solutions
of comparable probabilities are present over large ranges of
plasma temperatures and consequently, the estimated T I

c can
be very different from the input T P

c . For example, panel

(c) shows that for a 7 × 106 K plasma, the most probable
T I

c is either 1.6 × 105 or 3 × 105 K. The unconditional
probability P (T I

c ) of panel (d) is very nonuniform, some
ranges of estimated temperatures being totally unlikely (e.g.,
T I

c = [1.5 × 106, 4 × 106] K) while others are probable for
large intervals of T P

c (e.g., T I
c = 3×105 K or 106 K). However,

despite the jaggedness of P (T I
c |T P

c ), the map of P (T P
c |T I

c ) can
once again help to properly interpret the result of the inversion.
For example, profile (g) shows that for T I

c = 1.5 × 106 K, the
distribution of T P

c is distributed around T P
c = 107 K, which

is exactly the plasma temperature that can yield an inversion
at T I

c = 1.5 × 106 K (see panel (a)). Panel (f), providing the
probability distribution T P

c knowing that the inversion result
is T I

c = 7 × 106 K, exhibits a broad probability distribution
around T P

c = 1.5 × 107, showing that the plasma temperature
thus deduced is very uncertain. This is to be compared to the
0.05 log T P

c temperature resolution of the isothermal case (see
Section 3.2 of Paper I).

As the DEM becomes even larger, the impact on the robust-
ness of the inversion becomes greater. At σP = 0.7 log Te,
the probability map P (T I

c |T P
c ) of Figure 6(a) and the corre-

sponding probability P (T I
c ) clearly show two privileged so-

lutions: T I
c = 106 and 3 × 105 K. The estimated isothermal

temperatures are always the same for any T P
c , as illustrated by

5

Validation Exercise 1: Gaussian DEMs



Test DEMs:

4

tion in recent years by the compressed sensing commu-
nity. Compressed sensing is concerned with the recovery
of signals where the number of measurements is less than
(sometimes much less than) the number of components
in the reconstructed signals.
In an underdetermined linear system such as given by

Eq. (2), the family of solutions satisfying the equation
resides in an a�ne subspace of Rn. The challenge is to
select a solution within this subspace that most faithfully
represents the underlying scenario. In a series of papers
on solutions to underdetermined linear systems, Candes
& Tao (e.g. 2006, 2007) showed that, when compared to
a least-squares/minimum energy approach, the assump-
tion of sparsity often results in a solution that is a better
approximation to the real signal. This realization has
led to immense advances in many fields where the recon-
struction of a linear signal is desired from undersampled
data (e.g. time series, images, and tomographic magnetic
resonance imaging; see Donoho 2006; Lustig et al. 2007).
Mathematically, the most sparse solution is defined as

one that

minimizes ||~x||0 subject to D~x = ~y. (7)

Here ||~x||0 is the L0 norm of ~x, which is just the number
of non-zero components of ~x. Since there is no known
e�cient algorithm for solving this L0 norm minimization
problem, Candes & Tao (2006) instead proposed that one
should solve the corresponding L1 norm minimization
problem, namely

minimize ||~x||1 subject to D~x = ~y, (8)

where ||~x||1 =
nP

j=1
||xj ||. This is the underpinning of our

approach to tackling the EM inversion problem.
In practice, systematic (e.g. in the instrument response

matrix Kij) and random errors in the measurement vec-
tor ~y means that the sought-after solution may not nec-
essarily satisfy Eq. (2). Furthermore, for EMs we must
impose that the solution be positive semidefinite (i.e.
xj � 0). So our method solves the following linear pro-
gram:

LP1 : minimize
nP

j=1
xj subject to (9)

D~x  ~y + ~⌘, (10)

D~x � max(~y � ~⌘, 0), (11)

~x � 0. (12)

The inequality constraint (12) ensures the solutions are
positive semidefinite. The inequality constraints (10) and
(11) provide some tolerance for the solution to deviate
from satisfying Eq. (2). The inequality constraints (10)
and (11) provide some tolerance for the solution to de-
viate from satisfying Eq. (2). Note that this is not the
same as saying that the uncertainty in each channel is
dominated by photon counting statistics; in addition to
the square root dependence of statistical errors, there are
terms that are constant (read noise) and linear (calibra-
tion error) with respect to the signal. It is not necessary
(or, indeed, possible) to derive the tolerance ~⌘ on a rig-
orous analysis of all possible error terms for each obser-
vation vector, and the tolerance is not used as an error
estimate to compute a reduced �

2.

We are unaware of physical principles describing coro-
nal plasmas that would motivate such an objective func-
tion. However, this choice is appealing in a number of
ways. First of all, this scheme minimizes the number of
components (in terms of quadrature weights) needed to
fit the observations, and in this sense it avoids the prob-
lem of overfitting. This behavior is consistent with the
principle of parsimony (more commonly known as Ock-
ham’s Razor). Secondly, this scheme ensures positivity
of the solution (if a solution is found).
Thirdly, the problem posed as LP1 lends itself to being

solved by fast numerical techniques. The computational
requirement of any DEM method is a practical concern
since AIA delivers data at such a high rate (of order 105

observation vectors ~y per second). The DEM inversion
problem posed as LP1 is an example of basis pursuit. Ba-
sis pursuit is a technique commonly employed in the com-
pressed sensing literature for reconstructing undersam-
pled signals (Chen et al. 1998). Since we require ~x � 0,
the convex objective function ||~x||1 reduces to the simple
linear form

P
j xj . The linear program LP1 can then be

solved e�ciently using the simplex algorithm (Dantzig
et al. 1955), which is designed to find optimal solutions
to problems where the objective function is a linear form
and the constraints are posed as linear inequalities. Our
implementation of the DEM inversion code makes use
of the simplex function in the IDL data analysis pack-
age. The implementation of the simplex method in IDL
is based on the method as detailed in section 10.8 of Nu-
merical Recipes by Press, Flannery, & Teukolsky (1986).
The computational speed of the inversion code is dis-
cussed in section 4.1.
Regardless of the advantages listed above, a DEM in-

version method would be worthless if it only (or mostly)
returned solutions that are not representative of the
emitting coronal plasma. In the next section, we present
results from validation tests of the method.

3. VALIDATION TESTS

In this section, we test our inversion method against a
diverse set of thermal models of varying complexity and
realism.

3.1. Gaussian / log-normal DEM distributions

Log-normal distributions are commonly chosen to serve
as test cases for inversion codes (Hannah & Kontar 2012;
Guennou et al. 2012a,b; Plowman et al. 2013) and as
functional forms for DEM inversions of AIA data (e.g.
Aschwanden & Boerner 2011). They correspond to Gaus-
sian functions in log T space:

⇠(T, Tc,�) =
EM0

�

p
2⇡

exp


� (log T � log Tc)2

2�2

�
, (13)

where Tc is the peak temperature and � is the Gaussian
width. The normalization is chosen such that the total
emission measure is EM0 =

R1
0 ⇠dlogT .2 The valida-

tion test for the inversion method was performed over a

2 Strictly speaking, ⇠(T ) is not the di↵erential emission measure
as defined in Eq. (1). The two are related by the following relation
DEM(T ) = ln 10T�1

⇠(T ). Nevertheless, we will follow the com-
mon practice in the literature and refer to both DEM(T ) and ⇠(T )
as di↵erential emission measure functions.

EM0 = 1029 cm2



Validation Exercise 2: Quasi-steady 
loops in a NLFFF model of AR 11158

Magnetic Model: Quasi-Grad-Rubin Non-linear force-
free Field reconstruction of AR 11158. 
Thermal Model: Quasi-steady loops with different 
heating functions. 



AR 11158 Model A



AR 11158 Model B



Validation Exercise 3: MHD Model

MHD model of AR formation (with thermal conduction) by 
Chen et al. (2014A&A…564A..12C, 2015NatPh..11..492C)



MHD model of AR formation (with thermal conduction) by 
Chen et al. (2014A&A…564A..12C, 2015NatPh..11..492C)

Validation Exercise 3: MHD Model



CHAPTER 2. X-RAY TELESCOPE SOFTWARE GUIDE 51

Figure 2.13: Example of XRT temperature responses calculated for two di↵erent dates. The
solid lines are responses calculated for 2007-03-01, before the first CCD bakeout, and the
dashed curves are calculated for 2008-03-01, in the regime of regular bakeouts. The com-
parison shows how the sensitivity in the lower energy range, significantly decreased by the
contamination material, has been recovered through CCD bakeout and maintained with reg-
ular CCD bakeouts.

2.10.1 Calculating XRT Filter Response with Non-Standard Spectra
You can calculate the XRT filter response using non-standard spectra by using the routine
make xrt emiss model.pro; it puts a spectral emission model into a structure format that
other XRT routines will expect.

Basic call:
IDL> emiss_model = make_xrt_emiss_model(model name, wave, temp, $

spectrum, abund_model, ioneq_model, dens_model, $
data_files = data_files)

Inputs:

MODELNAME: (string scalar) This will be the name/ID given to this spectral model.

WAVE: (float array, [N�]) This is a 1D array of monotonically increasing wavelengths. Units
are in angstroms. Must correlate to one dimension of the SPEC array. See WLENGTH.

Validation Exercise 4: AIA-XRT Cross-Comparison*

*Not discussed in the paper



1.Load and prep an XRT image. 

2.Cutout AIA 94, 131, 171, 193, 211 & 335 level 1.5 data 
for XRT FOV as indicated by FITS keywords. 

1. DEM inversion (sun_coronal_ext.abund, chianti.ioneq). 

2. Sample DEMs onto XRT plate scale. 

3. Synthesize XRT image by folding response function 
against AIA DEM. 

3.Use tr_get_disp to align actual and synthetic XRT 
images. 

4.Compare (following slides).

AIA-XRT Cross-Comparison Analysis Procedure



2D histograms



2D histograms



2D histograms



Synthetic XRT Images



• Synthetic XRT images from DEMs derived using 
only AIA Reproduces morphology, but counts 
are too low compared to XRT by ~ 30 - 40%. 

• Is this good enough? 

• Is the discrepancy between synthetic and real 
XRT images due to limitations of the inversion, or 
due to uncertainties of the absolute calibration of 
both instruments?

Validation Exercise 4: AIA-XRT Cross-Comparison



Log-normal DEMs: AIA 6 channels only



Log-normal DEMs: AIA 6 channels + XRT Be-thin





log T = 6.3 log T = 6.5 log T = 6.7 log T = 6.9 log T = 7.1 log T = 7.3



Warren, Brooks & Winebarger (2011)





Side benefit: Image Denoising

y (AIA 131 Level 1.5) Kx# (from inversion)



Applications

1. Evolution of Emerging Flux Regions 

2. Reconnection Outflows 

3. Chromospheric Evaporation and Condensation



Lower right panel only 
Greyscale: 
Blos from HMI 
Green: 6MK EM 
Yellow/Red: 10 MK EM 

Other panels: 
EM in various log T bins 

DEM movie 
of the emergence 
of AR 11726

Science Case 1) Emerging Flux



Black pixels are 
where no solutions 
were found

DEM movie 
of the emergence 
of AR 11158
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Figure 1. Summary of the RHESSI imaging spectroscopy observations of the 2012 July 19 flare. On the left, the time profile of the non-thermal HXR flux at 30–80 keV
is given in blue, with the linear GOES curve shown schematically in gray in the background. The time interval used to reconstruct the RHESSI image shown in the
center panel is marked in blue outlining the first HXR peak during the impulsive phase of the flare. The thermal emissions in the 6–8 keV range (green contours at
20%, 35%, 50%, 65%, 70%, 95%) show the location of the main flare loops also seen in the 193 Å AIA image. The non-thermal HXR emissions come from the
footpoints of the thermal flare loops (blue contours at 30%, 50%, 70%, 90%), but also from above the main flare loop as outlined by the 30–80 keV contours. Relative
to the brightest foopoint, the extended coronal source is shown in contours at 2%, 2.5%, 3%. The plot on the right gives the imaging spectroscopy results: The black
histogram gives the imaging spectroscopy results for the combined coronal sources; the observed footpoint spectrum is given by crosses. The green and red curves are
the thermal and non-thermal fit to the combined coronal sources, while the power-law fit to the footpoints is given in blue.
(A color version of this figure is available in the online journal.)

the emission is intrinsically faint. The drastically increased
coverage and sensitivity provided by the Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) on board the Solar Dynamic
Observatory (SDO) provides by far the best diagnostics of
thermal plasma. In this paper we present observations of a GOES
M9 class limb-flare on 2012 July 19 simultaneously observed by
RHESSI and AIA. While this remarkable event provides many
fascinating insights into flare physics (e.g., Liu et al. 2013; Liu
2013), our paper focuses only on the ambient density estimates
within the acceleration region during the impulsive phase of
the event. For a detailed analysis of all phase of this flare, we
refer to Liu et al. (2013) and Liu (2013). We first discuss the
RHESSI imaging spectroscopy observations of the above-the-
loop-top source during the main HXR peak followed by the
derivation of the differential emission measure (DEM) from
AIA images and the density of the above-the-loop-top source.
In Section 2.3, we use the derived ambient density to estimate the
density of accelerated electrons within the acceleration region
to investigate the acceleration efficiency at the peak time of the
HXR emission.

2. OBSERVATIONS

The limb flare of SOL2012-07-19T05:58 shows one of the
most prominent above-the-loop-top HXR sources in the entire
RHESSI data base (Figure 1). The coronal source is clearly
visible in the 30–80 keV band for the whole duration of the
main HXR peaks (05:20-05:27 UT). While the above-the-loop-
top source is already visible in regular CLEAN images (Hurford
et al 2002), the images shown in Figure 1 are produced using the
two-step CLEAN algorithm (Krucker et al. 2011). The source
location is ∼35′′ above the center of the thermal flare loops
seen by RHESSI in the 6–8 keV range and by the AIA 193 Å
wavelength channel, one of the filters with high temperature
response. Liu et al. (2013) reported a smaller separation of
21′′, but this difference could be due to the different energy
range selection. In either case, the separation is even more
prominent than in the Masuda flare (Masuda et al. 1994). The

RHESSI images also reveal the existence of footpoint sources.
The northern footpoint dominates over the southern footpoint,
but this asymmetry is likely because part of the emission from
the flare ribbons is occulted by the solar disk. STEREO EUVI
images reveal that, if seen from Earth, the solar disk occults
a larger part of the southern ribbon than the northern ribbon
(Patsourakos et al. 2013; Liu et al. 2013); indicating the weaker
southern footpoint could indeed be due to occultation. While
the footpoints show the typical compact sources, the above-the-
loop-top sources is spatially extended. From the CLEAN image
shown in Figure 1, we derived a deconvolved source diameter of
15′′ (for details in source size determination with RHESSI, see
Dennis & Pernak 2009 and Warmuth & Mann 2013). The limited
quality of the RHESSI reconstructed images does not allow us
to derive fine structures within the above-the-loop-top source,
and the derived source size has to be understood as the second
moment of the actual source shape. Despite the low intensity
of the coronal source, its large size compared to the footpoint
areas makes its flux about a third (32% ± 3%) of the total HXR
flux. This rather large fraction of non-thermal emission from the
corona could again be partially attributed to occultation of the
flare ribbons, as was also speculated for the Masuda flare (Wang
et al. 1995).

2.1. RHESSI Imaging Spectrocopy

Images below ∼14 keV show the thermal flare loop only
(Figure 2), and we therefore use the spatially integrated spectrum
below 14 keV to derive the temperature of the main flare loops
(T ∼ 23 MK and EM ∼ 4 × 1048 cm−3 at 05:21UT; for the
temporal evolution see Liu et al. 2013). Assuming a spherical
volume (V ∼ 7 × 1026 cm3), the density of the thermal loop
becomes nth ∼ 8 × 1010 cm−3; a typical value for flare loops
(e.g., Caspi et al. 2013). To get a separate spectrum of the
chromospheric and coronal sources, we use RHESSI standard
imaging spectroscopy techniques (e.g., Krucker & Lin 2002;
Battaglia & Benz 2006). Above ∼22 keV, images show the
footpoints and the above-the-loop-top source, but not the main
thermal loop. The spectra derived from these images can be each

2

13T12:36), respectively. Overview time profiles and images are
given in Figures 2 and 3. In the following section, we describe
the individual events, and follow with a discussion of the results
as summarized in Table 1.

2.1. SOL2012-07-19T05:58 (M7.7)

There are several previously published papers on this two-
ribbon flare, which appears as a textbook example of an arcade
at the western limb (Liu 2013; Liu et al. 2013; Battaglia &
Kontar 2013; Kirichek et al. 2013; Patsourakos et al. 2013;

Krucker & Battaglia 2014; Dudík et al. 2014; Sun et al. 2014).
Besides emission from the ribbons (Figure 3, left), the RHESSI
observations reveal a very prominent above-the-loop-top HXR
source that outlines the location of particle acceleration
(Krucker & Battaglia 2014). The STEREO images show that
the flare ribbons are very close to the limb as seen from Earth
(Figure 4, left). The southern ribbon shows significantly
weaker WL and HXR emissions than the northern one
(Figure 3). This could be due to occultation, as the southern
ribbon extends farther behind the limb and emission from the
far end of the ribbon could be hidden, but the EUV emission

Figure 2. Time profiles of the three flares: the top panels show the time profiles of the WL flux (summed over enhancement; arbitrary units) and non-thermal HXR
flux at 30–80 keV in red and blue, respectively, with the linear GOES curve shown schematically in gray in the background for timing reference. Below, the apparent
altitude of the peak of the WL emission above the limb is shown in red. The black dotted lines give the FWHM of a Gaussian fit to the HMI source above the limb; the
thin black line is the deconvolved source size derived by a rough deconvolution of the observed size with the HMI PSF from Yeo et al. (2014). The blue points give
the HXR centroid positions with error bars from statistical uncertainties. No error bars are shown for the HMI centroids as they are dominated by systematic
uncertainties (∼70 km).

Figure 3. X-ray and optical imaging of the three flares at the peak time of the impulsive phase: the images are from HMI with the pre-flare image subtracted; enhanced
emission is shown in black. The contours represent RHESSI Clean maps in the thermal (red, 12–15 keV) and non-thermal (blue, 30–80 keV) HXR range. Two flares
(left and right) are large-scale flares with widely separated ribbons and flare loops reaching high altitudes, while the other flare (middle) is more compact. For all flares
the ribbons appear above the limb. The large-scale flares show a non-thermal above-the-loop-top source.

4
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Selected scientific studies of this flare: 
• Patsourakos, Vourlidas & Stenborg, 2013, ApJ, 764, 

125: Prior confined eruption produced a pre-existing 
coronal flux rope, which then erupted to give the M7.7 
flare. 

• Wei Liu, Chen & Petrosian, 2013, ApJ, 767, 168: 
Detailed timeline of sequence of events including timing 
and propagation of EUV and X-ray sources. 

• Rui Liu, 2013, MNRAS, 434, 1309: Same onset time for 
HXR and microwave (Nobeyama RH data) bursts. 

• Krücker & Battaglia , 2014, ApJ, 780, 107: Ratio of 
thermal protons (from AIA) to non-thermal electrons 
(from RHESSI HXR) in loop-top source is of order 1. 

• Sun, Cheng & Ding, 2014, ApJ, 786, 73: Performed a 
very detailed DEM (imaging) analysis of this flare. They 
used xrt_iterative_dem2.pro (code by M. Weber, non-
linear least square inversion with splines). 

• Krücker et al., 2015, ApJ, 802, 19: HMI white light (WL) 
enhancement at footprint co-incident with HXR 
footpoint source. Interpretation: energy deposition by 
non-thermal electrons is radiated away and does not 
cause chromospheric evaporation.

M7.7 flare on 
2012-07-19

Science Case 2) Reconnection Outflows
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Shiota et al. (2005, ApJ, 
634, 663): 
• 2.5D MHD simulation 

of of the eruption of a 
pre-existing flux rope 
t r i g g e r e d b y fl u x 
emergence. 

• Similar scenario as 
modeled by Chen & 
Shibata (2000, ApJ, 
545, 524) but with 
field-aligned thermal 
conduction. 

• Both temperature and 
density are initially 
uniform (dimensionless 
value of unity).



Shiota et al. (2005, ApJ, 
634, 663): 
• 2.5D MHD simulation of 

of the eruption of a pre-
existing flux rope 
triggered by flux 
emergence. 

• Similar scenario as 
modeled by Chen & 
Shibata (2000, ApJ, 
545, 524) but with field-
aligned thermal 
conduction. 

• Both temperature and 
density are initially 
uniform (dimensionless 
value of unity).



Dashed contours: Total EM =1029 cm-5

Solid contours: Total EM =1030 cm-5

Chromospheric evaporation?

Downward mass pumping from!
reconnection outflow?



Science Case 3) Chromospheric 
Evaporation & Condensation

IRIS is designed to probe 
the chromosphere and 
transition region, but it  
also sees flare plasma 
(Fe XXI @10 MK). 
!
W h a t a b o u t t h e 
temperature range in 
between? 
!
Join t observat ions 
between IRIS andAIA to 
fill the temperature gap.

Science Objectives
The IRIS science investigation is centered on 3 themes of broad significance to 
solar and plasma physics, space weather, and astrophysics, aiming to understand 
how internal convective flows power atmospheric activity:

1. Which types of non-thermal energy dominate in the chromosphere and beyond?

2. How does the chromosphere regulate mass and energy supply to corona and 
heliosphere?

3. How do magnetic flux and matter rise through the lower atmosphere, and what 
role does flux emergence play in flares and mass ejections?

Observations 
Spectra covering temperatures from 4,500 K to 10 MK

Images covering temperatures from 4,500 K to 65,000 K

Baseline: 5s for slit-jaw images, 1s for 6 spectral windows, rapid rastering

Predicted Count Rates

Observing Modes

Overview
The primary goal of NASA’s Interface Region Imaging Spectrograph (IRIS) 
small explorer is to understand how the solar atmosphere is energized. The 
IRIS investigation combines advanced numerical modeling with a high 
resolution UV imaging spectrograph.

IRIS will obtain UV spectra and images with high resolution in space (1/3 
arcsec) and time (1s) focused on the chromosphere and transition region of 
the Sun, a complex dynamic interface region between the photosphere and 

corona. In this region, all 
but a few percent of the 
non-radiat ive energy 
l e a v i n g t h e S u n i s 
converted into heat and 
radiation. IRIS fills a 
crucial gap in our ability 
to advance Sun-Earth 
connection studies by 
tracing the flow of energy 
and plasma through this 
foundation of the corona 
and heliosphere. 

General

! Multi-channel imaging spectrograph with 20 cm UV telescope. 

 ! Spectra along a slit (1/3 arcsec wide) and slit-jaw images. 

 ! CCD detectors with 1/6 arcsec pixels. 

 ! Effective spatial resolution: 0.33 (FUV) and 0.4 arcsec (NUV)

 ! Maximum field of view: 120x120 arcsec.

Spectra
 ! Far-UV channels: 1332-1358Å & 1390-1406Å at 40 mÅ resolution

 ! Near-UV channel: 2785-2835Å at 80 mÅ resolution

Slit-jaw Images
 ! 1335 Å and 1400 Å with 40 Å bandpass each

 ! 2796 Å and 2831 Å with 4 Å bandpass each

Instrument
20 cm UV telescope + spectrograph

Mission Details
Sun-synchronous, polar orbit: continuous observations 8 months/year

Expected launch date: around December 2012

Data rate 0.7 Mbits/s: 3-60 more than previous imaging spectrographs

Coordinated observations with Hinode, SDO, STEREO & ground-based 
observatories for photospheric magnetograms and coronal imaging

Collaborating Institutions: ! ! !     LMSAL (PI: Alan Title)

 ! LMS&ES (spacecraft)! ! ! ! ! NASA ARC (mission ops)

! SAO (telescope) ! ! ! ! ! ! MSU (spectrograph)

! LSJU (data handling) ! ! ! ! ! UiO (modeling, data)

High throughput allows for rapid rasters of high S/N spectra that allow line centroid 
velocity determination down to 0.5 km/s precision within 1 s exposures for brightest lines.

Numerical Modeling
The IRIS science investigation has a 
strong theory/numerical modeling 
component. State-of-the-art radiative 3D 
MHD numerical simulations and synthetic 
(non-LTE) diagnostics in, e.g., optically 
thick lines like Mg II h/k, will allow 
de ta i l ed compar i sons w i th IR I S 
observables. Such comparisons are key to 
interpreting the IRIS data, and ultimately 
determining the non-thermal energization 
of the solar atmosphere.  

Comparison to SUMER/EIS

Example showing synthetic slit-jaw images and spectral 
profiles in Mg II h/k by using MULTI_3D on snapshots 
of 3D radiative MHD simulations from the University 
of Oslo (BIFROST). Courtesy Mats Carlsson (UiO/ITA).

Example showing intensity, doppler shift, line width and spectral 
profiles of the optically thin Si IV 1394 A line by using CHIANTI on 
snapshots from BIFROST simulations. Courtesy Viggo Hansteen 
(UiO/ITA).

The high throughput & spatial 
resolution, and simultaneous slit-jaw 
imag ing o f IR IS wi l l prov ide 
unprecedented v iews o f the 
c o n n e c t i o n b e t w e e n t h e 
chromosphere, TR and corona. For 
example, IRIS can take a full spectral 
raster across 6 arcsec and context 
slit-jaw imaging at 0.33 arcsec 
resolution within the time it takes 
SUMER or EIS to expose one slit 
pos i t ion (~20s ) a t 2 arcsec 
resolution. Ask to see the movie!

IRIS Small Explorer
Interface Region Imaging Spectrograph
PI: Alan Title (Lockheed Martin Solar & Astrophysics Lab)

http://iris.lmsal.com

Co-Investigators
A. Title (PI), W. Abbett, M. Carlsson, M. Cheung, E. DeLuca, B. De Pontieu, B. Fleck, S. Freeland, L. Golub, 
V. Hansteen, L. Harra, J. Harvey, N. Hurlburt, P. Judge, J. Lemen, C. Kankelborg, D. Klumpar, B. Lites, S. 
McIntosh, S. Poedts, P. Scherrer, C. Schrijver, R. Shine, T. Tarbell, D. Tenerelli, S. Tsuneta, H. Uitenbroek, A. 
van Ballegooijen, N. Waltham, M. Weber, T. Wiegelmann, M. Wheatland, S. Worden J-P Wuelser, M. Yamada

From the IRIS poster @ iris.lmsal.com

http://iris.lmsal.com


IRIS SJI 1330: Diffuse, long-lived loops reaching into the 
corona are generally attributed to Fe XXI 1354 Å emission.

At http://www.lmsal.com/data.html, !
go to ‘List of Flares Observed with IRIS’ !
compiled by Kathy Reeves.

20140917 - 
19:26 C7.5 flare - behind 

the limb, nice big loop of Fe 
XXI visible, red shift in 

Fe XXI


http://www.lmsal.com/data.html


IRIS SJI 1330: Likely Fe XXI 1354 Å emission.
C II 1336 O I 1356 Si IV 1403 Mg II k 2796 SJI 1330

GOES X-ray

SJI Total DN/image



IRIS SJI 1330: Likely Fe XXI 1354 Å emission.
C II 1336 O I 1356 Si IV 1403 Mg II k 2796 SJI 1330

GOES X-ray

SJI Total DN/image



Lower right panel only 
Greyscale: 
Blos from HMI 
Green: 6MK EM 
Yellow/Red: 10 MK EM 

Other panels: 
EM in various log T bins 

• Tell-tale signs of 
chromospheric 
evaporation!

• Loops filled with 
plasma at 10 MK and 
above!

• Loops cool to lower 
log T bins!

• At time (~20:29 UT) 
when plasma cools 
down to log T/K ~ 5.8, 
coronal 
condensations in SJI 
1330 begin to appear.
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IRIS SJI 1330: Coronal condensations appear at about same 
time (~20:29 UT) as when AIA sees  sub-MK plasma.



- Thermal diagnostics with SDO/AIA using a new, validated DEM inversion 
method (Cheung et al., 2015, ApJ)  
- Provides positive definite solutions. 
- Speed: O(104) solutions / sec with a single IDL thread. 
- Method tested against various thermal models: (1) Log-normal 

(Gaussian) distributions, (2) 3D models of quasi-steady loop 
atmospheres in a non-linear force-free field reconstruction of AR 
11158, (3) MHD simulation of AR corona formation and (4) AIA-XRT 
cross comparison. 

- Science applications 
1) Emerging Flux Regions 
2) Reconnection Outflows 
3) Chromospheric Evaporation & Condensation  

- AIA and IRIS together give temperature coverage from the quiet 
chromosphere to the flaring corona.

Summary



How to use the Sparse DEM code

• Instructions in the readme file 

• Download *genx  files, which contain sample 
AIA 6-channel data. 

• Download aia_sparse_em_init.pro & 
exercise1.pro 

➡ .compile aia_sparse_em_init 

➡ .r exercise1

http://www.lmsal.com/~cheung/AIA/tutorial_dem/



Output image of exercise1.pro


