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Chapter 1

Introduction: Extent of the
Universe

1.1 The Three Most Important Natural Constants

The most fundamental physical constants are Gravitational constant, velocity of light, and
Planck constant:

G = 6.67428(67) x 10~ N-m? /kg? (m?3/kg/s?)
c = 2.99792458 x 10% m/s
h = 6.62606896(33) x 10734 J.s O (kg-m?/s)

h = h/2m is often used:
h = 1.054571628(53) x 1073* J-s 0 (kg-m?/s)

In the Newtonian mechanics, the equation of motion includes the gravitational constant,
G, but not the light speed, c¢. This is because the Newtonian mechanics handle motion of the
objects only when their velocities are much less than c.

When the velocities get closer to ¢, we need special relativity, where the equations include
c¢. However, the equations of special relativity do not include G, that is because special
relativity is valid only when the gravity is negligible.

Equations of general relativity include both ¢ and G, so that they can handle the cases
when velocities of the motions caused by the gravity get closer to the light velocity (i.e.,
strong gravity).

Still, equations of general relativity do not include the Planck constant h, that is be-
cause general relativity can handle only macroscopic phenomena, where quantum effects are
negligible.

The Planck constant h appears in the Schrodinger equation of quantum mechanics, which
describes microscopic world. However, ¢ does not appear in the Schrédinger equation, since
particles are assumed to move much slower than c¢. This is not correct, and we need relativistic
quantum mechanics, where the Dirac equation includes h and c.

Today, we know that there are four fundamental forces in the Universe; electro-magnetic
force, weak interaction, strong interaction, and gravity. All the forces but the gravity are
described by the standard theory, whose equations include h and c¢. Goal of the standard

7



8 CHAPTER 1. INTRODUCTION: EXTENT OF THE UNIVERSE

theory is to unify the three fundamental forces, electro-magnetic force, weak interaction and
strong interaction. This goal has not been achieved yet, but hopefully, is not too far.

What about the “final” theory which takes into account the gravity between elementary
particles, whose equations have h, ¢ and G? We do not know such theory of quantum gravity
yet, at least the one which is generally accepted.

In any case, our universe is described by physical laws using ¢, G and h.

1.2 Planck Time, Planck Length, Planck Mass

From these three natural constants, we may derive time, length and mass, which are called
Planck time, Planck length and Plank mass. Also, Planck density is defined as the Plank
mass divided by the cube of Planck length.

Roughly speaking, the current physical laws can describe evolution from the initial uni-
verse, of which age, size and density are Planck time, Planck length and Planck density,
respectively. How such an initial universe is created is beyond the scope of physics.

Look at the units (dimensions) of G, ¢, ki, and create quantities having the units (dimen-
sions) of time, length, mass and density to give Planck time, Planck length, Planck mass and
Planck density.

[
Planck Time =tp = —? =5.39 x 1074 [sec] (1.1)
c
_ |G ~35
Planck Length =lp =1/ — = 1.61 x 10 [m] (1.2)
c
he _s
Planck Mass = mp = vl 2.18 x 10° [kg] (1.3)
5
Planck Density = pp = % =5.16 x 10% [kg/m®] = 5.16 x 10% [g/cm?] (1.4)

1.3 Age and Size of the Universe

Age of the size is estimated as 13.8 billion year (4.3 x 10'7 sec) from precise measurement
of the Cosmic Microwave Background. Thus, size of the universe is estimated as 13.8 billion
light-year (1.3 x 10?6 m). If we compare these values with Planck Time and Planck Length,
we can see that the difference is 61 orders of magnitudes. In other words, the universe, the
one which we may study physically, has the spatial and temporal extent having 61 orders of
magnitudes.

1.4 Black Hole and Planck Particle

Schwarzschild radius of an object having mass M is given as Rg is 2GM/c?. This gives an
estimate of the black hole size of a object having the mass M*.

Relationship between Planck mass and Planck length is given as [p = Gmp/c?. Namely,
if we ignore the factor 2, a virtual particle having the Planck mass and Planck length (radius)
is considered as a black hole. This may be called as Planck particle.

1Let’s remember that Schwarzschild of the Sun and the earth are approximately 3km and 9mm, respectively.
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Meanwhile, the Compton wave-length, Ac, for a particle with mass m is defined such that

E =mc? = hv = he/)c. (1.5)
Namely,
o= 4 (1.6)
C = m C. .

Relationship between the Planck length and Planck mass is

h
mpc

lp= (1.7)
Thus, if we ignore 27, the Schwarzschild radius and the Compton wave-length of the Planck
particle coincide. In other words, the Planck particle is the quantum black hole, and the
Planck mass gives the mass of the minimum black hole in the universe.

Let’s compare these values with those of a realistic elementary particle, e.g., proton.
Proton mass is 1.67 x 10727 kg, and its Compton wave-length is? 1.3214 x 10~'°m. Namely, the
virtual Planck particle is much more massive and tinier than a realistic elementary particle.

Let’s remember the proton mass (energy) as myc®> =~ 1 GeV. It is also useful to remember Ac ~ 2000
eV-A. Thus, Compton wave-length of proton is h/mc = 2whc/mc* = 27 x 2000[eV - A]/10°[eV] ~ 107" m.
In addition, using 1 eV =~ 1.6 x 1072 erg (you should remember this relation too). m, = 1[GeV]/c*> ~
10° x 1.6 x 107 *2[erg] /(3 x 10'%[cm/s])? =~ 2 x 107** g.






Chapter 2

How to Interpret the X-ray data

2.1 Basics

2.1.1 Basic of Basics

It is useful to remember these basic numbers and formulae.

1 pc~3x10® cm

light-velocity ¢~ 3 x 10'° cm/s

1 year = 3.15 x 107 =~ 7 x 107sec

Distance between Sun and Earth = 1Astronomical Unit (AU) ~ 500 light-seconds

In X-ray astronomy, arrival (detection) time is usually recorded for each photon. The
"barycentric correction”, up to ~500 sec, is applied to each photon to assign the photon
arrival time at the solar-system barycenter (that is located inside the Sun), taking account
of orbital motions of the earth and the satellite.

Conversion between the X-ray wavelength and energy

12.4
A[A]

Remember, an X-ray photon at 12.4 keV has the wave-length 1 A.

E [keV] ~

Conversion between X-ray energy and temperature
1eV =11604 K ~ 10* K

Very crudely, an object shining with a spectrum of ~1 keV has an temperature of ~ 107 K.

Energy unit conversion

leVa16x10"2erg

11



12 CHAPTER 2. HOW TO INTERPRET THE X-RAY DATA

Boltzmann constant

kE=1.38x10"1 erg/K

Stephan-Boltzmann constant
o~ 1.0 x10** erg/s/cm?/keV*

For the derivation of the Stephan-Boltzmann constant, see section 5.3.3. It is practical
to remember with this unit. For instance, a 10 km radius neutron star shining with 2 keV
blackbody has the luminosity,

L =47 (10 km)? o (2keV)* =~ 2 x 10%® erg/s.

A white-dwarf shining at the Eddington-luminosity (2.17) has the surface temperature,

I 1/4 A\ V4 R —1/2
T=(—"1) =~ = .
<4mR2> B0 eV (M@> (5000km>

The ROSAT satellite discovered many “Super-soft Sources”, which typically have tempera-
tures of 50 ~ 100 eV. These are actually considered to be blackbody emission from white
dwarf surfaces shining at nearly Eddington luminosities.

2.1.2 Units in electromagnetic theory

In electromagnetic theory, different unit systems are commonly used. Coulomb’s law for
electricity and magnetism may be written as,

1 q
1 mm’
:@ 1"2 . (22)

where hy and hy are proportional constants (no dimension), € and p are constants with
dimension. The left-hand side is the “force” with the dimension of [mass-length- time=2];
depending the dimensions of electrical and magnetic charges, ¢ and m, dimensions of ¢ and
1 are determined.

The MKSA unit system

Using [m], [kg], and [s] for length, mass and time, and introduce [A] for electrical current.

Unit of electrical charge will be [C], where 1 [C] = 1 [A-s]. Coulomb’s laws are written as
follows;
1 qf
= — 2.
e 12 (2:3)
1 /
F mm (2.4)

:471',u0 r2 7
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Here, from (2.3), o has the dimension [A? - time* - length—3- mass™!] . The light-velocity c

is written as 1

Vo fo

from which dimension of pg is determined. Using (2.4), dimension of magnetic charge is
determined.

MKSA unit system is often used in engineering and laboratory experiments, since it is
useful to handle electric circuits. Most undergraduate text books adopt MKSA units

C =

(2.5)

The Gauss unit system

Coulomb’s law may be simply written as

F=—= 2.6
(2.6)
/
mm
= (2.7)

In this case, both electric and magnetic charges have dimensions of [mass */2-length?/2-time~!].
Gauss unit is useful to describe natural phenomena, so often adopted in atomic physics and
astrophysics. In fact, most papers and graduate level text books are written using Gauss
unit.

In my lecture, I adopt the Gauss unit system.

Basic equations in electromagnetic theory

Expression of Maxwell’s equations and other basic equations are dependent on the unit-
system:

MKSA unit-system Gauss unit-system

divD = ) 4dmp
divB = 0 0
rotH = i+ %2 imj 4 19D
rotE = —%—? <5
D= eE ~E
B = wH %H

Magnetic flux density and energy density

Magnetic energy density is written as

¢ [erg/cm?®] = 8i7r (B[gauss])® (Gauss unit) (2.8)
or / ) o .
¢ [J/m?] = S (B'[T])” (MKSA unit), (2.9)

where g = 47 x 1077 [N/A?] is the magnetic permeability in vacuum. Here, in order to
clarify difference of the same physical quantities expressed by two different units, we put ’
for € and B in the second equation.
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Note that [gauss] has the dimension of [cm~/2 g!/2 s71], so that [gauss?] corresponds to
[erg/cm3]. Also, [T] has the dimension of [N/(A-m)], so that [T?]/uo corresponds to [J/m?].
Magnetic flux density strength of 1 [T] is equal to 10* [gauss], thus B’ = 10~* B. However,

be careful that dimensions of [T] and [gauss] are different! :

1 T (MKSA unit) <= 10,000 gauss (cgs unit).

Note,
[J/m?] = [107erg/(100cm)?] = 10 [erg/cm?],
thus,
€ =1/10e.
Similarly,
)
/ - !/ — 10_4B 2
T 2 5 dr X107 )
1B 1
1087 107

Now, we see that equations (2.8) and (?7?) agree.

2.2 Review of Atomic Physics
2.2.1 Things useful to remember
Electron/Positron mass

mec? = 511 keV

The pair-production of eT-e™ creates two gamma-ray photons at 511 keV (annihilation line),
which are typically observed from the Galactic center (an example below, by the INTEGRAL
satellite).

Compton wavelength

The Compton wavelength, A., is defined as the wavelength of the electro-magnetic wave
corresponding to the electron mass energy, 511 keV, so that

me ¢ = hv = he/ e,

and \. = he/me ¢ = 12.4 [keV - A]/511 keV ~ 0.024A0

Mass of the nucleons (proton or neutron)

mp02 ~ mnc2 ~ 940 MeV ~ 1 GeV

'In this relation, often the left-hand side and the righ-hand side are connected by equal sign, as “1 T =
10* gauss” which, I belive, is mis-leading and should be avoided.
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0407
| —Total
0.35) -Narrow line
0.30 - —-Broad line
| —---OrthoPs
025" .....Power law
020 | « SPI 2004 public data

107 photons/s/cm*/keV

Figure 2.1: Annihilation line from the Galactic center, observed by the INTEGRAL satellite
(Knodlseder et al. 2006, A&A, 445, 579).

Fine structure constant
e2 1

hc%ﬁ

How to remember the Planck constant
fic = 1973 eV A ~ 2000 eV A

You may derive several important atomic parameters as below, by remembering these
formulae.

Classical electron radius

Classically, an electron is regarded as a sphere having the classical photon radius, rg, which
is defined as the radius where the electric potential and the mass energy are equal, so that

— = MeC,
To

2 2 12 A
po= & ¢ he 1 2000eVA o 105 A,
mec?  hemec? 137 511 keV

More precisely, ro = 2.818 x 107% A.

Thomson scattering cross-section o

Approximately, geometrical cross-section of the sphere having the classical electron radius
(wrd), but precisely,

8
or = gmg = 6.65 x 10~?°cm?. (2.10)
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The inverse is ~ 1.5 x 10?4 cm™2. If hydrogen column density of the matter, Nz, exceeds this
value, the matter is considered Thomson thick or Compton thick, since the scattering optical
depth 7scqt = Ngop exceeds unity.

Thomson Scattering Opacity

In radiation transfer, cross-section of matter [cm?] per 1 [g] in the line-of-sight, namely, mass-
absorption coefficient, is often used as a measure of the opacity, expressed as & [cm?/g]0 In
X-ray regime, Thomson scattering opacity is not negligible. To calculate Thomson scattering
opacity of the matter precisely, it is necessary to take into account the element abundance.
However, approximately, only assuming hydrogen,

op _opc® _6.65x 10" %cm? x (3 x 10%m/s)?

~ T ~ ~ 0.4 [cm?/g]. 2.11
T m,  1GeV 109 x 1.6 x 10~ 2erg 0.4 [cm?/g] ( )

Bohr radius

Assuming a classical circular motion of electron around proton with the radius rp. The

angular momentum is quantized.

’1)2 2

Eliminating v,

rg = )
me €2

You should remember that rg ~ 0.5A4. You may also easily derive as follows (need to

remember fine structure constant and fic);

h* ke he 2000 eVA
mee2  mec2 ez 511 keV

137 ~ 0.5 A.

The same discussion holds for ions having only a single electron (hydrogenic-ion). For
atoms with the atomic number Z, the positive electric charge of the nucleus is Ze. Replacing
one of the e to Ze, the radius will be 1/Zrp. The electron is more strongly bound to the
nucleus due to the stronger electric force.

Lyman edge energy
Hydrogen binding energy is,

2 rB 2rg  2h2

If you add this energy to the bound electron, the hydrogen is ionized. This energy corresponds
to the Lyman edge energy, 13.6 eV. You may derive as follows;

mee!  mec® [\ 5llkeV [ 1
22 2 \hc) 2 137

)2 = 13.6 [eV].
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Remember the corresponding wave-length, as

12.4 [keVA]/13.6eV = 911A.

Lyman edge of hydrogenic-ions

Binding energy of hydrogen atom is

In the case of hydrogenic-ions with the atomic number Z (hydrogenic-ion), the radius will be
rp/Z, and one of the e should be replace by Ze. Thus, the binding energy of hydrogenic-ions
with the atomic number Z is 13.6 Z2 eVO

In X-ray astronomy, iron (Z = 26) K-feature is often important. K-edge energy of the
hydrogenic iron ion (Fe 26) is 13.6 [eV] x 26 x 26 ~ 9.2 keVO

Cyclotron frequency

Consider electrons in the magnetic field, B, where electrons make circular motion around the
magnetic field lines with the radius r and velocity v;

02 evB

— = . 2.12
Me , c ( )

The angular frequency is w = v/r = eB/mec, and cyclotron emission is made with the same
frequency. Consequently, the cyclotron energy, F, is

E, = heB  he

= 2B. 2.13
MeC 2mec ( )
Here, he/(2mec) is the Bohr magneton, 9.3 x 1072! [erg/gauss|.

In X-ray astronomy, it is useful to remember the following relation;

B

E. =12 keV ————
Y 1012 [Gauss]

(2.14)
In fact, cyclotron absorption lines are observed from X-ray binary pulsars, in which neu-
tron stars have strong magnetic fields over 10'? Gauss.

2.2.2 Cross-section due to photoelectric absorption

X-ray from 0.1 — 10 keV are mainly absorbed photoelectric absorptions due to M-, L- or
K-shells of C, N, O, Ne, Si, S, and Fe. Absorptions by H and He are almost negligible
in this energy band. Absorptions by other rare elements are not significant either. The
photoelectric absorption cross sections suddenly increases at the edges, then degrees with
energy as o(E) oc E73.

In the case of neutral Fe, X-rays below Ly edge (0.708 keV) are absorbed by M-shell
electrons. X-rays between this energy and K-edge (7.11 keV) are absorbed by L-electrons.
X-rays slightly above K-edge are absorbed by K-electrons, but soon iron will be transparent
as the cross section decreases with oc £73.
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o} \
Pulse-Height Spectrem \g
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o -+ fhus H-_HF i L|||i

Counts/sikeV
P

g

-
=
]

Residaul (sigma)

ol

wl L > 3 [ m 50 oo
X-my Enzrpy (keV)

Retio to the Crab spectmam

Figure 2.2: The cyclotron absorption line at ~ 28.5 keV observed from X03314-35 with the
Ginga satellite (Makishima et al. 1990, ApJ, 365, L59). Using (2.2.1), the neutron star
magnetic field is estimated as 2.5 x 10'? gauss.
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Cross Sections of neutral atoms
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Figure 2.3: Cross-section due to neutral elements. Plotted using the data from
$HEADAS/../ftools/spectral /xspec/manager/mansig.dat in the heasoft package provided by
NASA/GSFC.

2.2.3 Photoelectric absorption by ionized matter (warm absorber)

As atoms get more highly ionized, edge energies increase, since the orbital electrons are more
strongly bound. Also, electrons in the outer shell are ionized, so matter are more transparent
for low energy X-rays. In particular, when all the elections in a particular shell are ionized,
photoelectric absorption by that shell diminish. in Figure 2.4, when iron is ionized to Fe XVII
(Ne-like; L-shell is filled, but M-shell is empty), iron will be transparent to X-rays below
Fe XVII L-edge ~ 1.3 keV. Similarly, for Fe XXV (He-like; K-shell is filled, but L-shell is
empty), X-rays below Fe XXV K-edge, ~ 8.8 keV are not absorbed.

In realistic ionized plasma, various elements are ionized at various ionization states, so
complex X-ray spectra with many absorption lines and/or emission lines are observed. In
particular, when there are vacancies in the upper-shell, resonance absorption lines are pro-

duced when electrons are excited by absorbing the X-ray corresponding to the energy gap
(L-shell — M-shell, or K-shell —L-shell)

2.3 Basic of Astrophysics

2.3.1 Eddington luminosity

Matter falling to stellar objects may receive photon-pressure due to the radiation. In the case
of spherical symmetry, the Eddington limit gives the maximum luminosity, when the gravity
and the photon-pressure balance.

Here, for simplicity, we consider only hydrogen, where mpy is the hydrogen atomic mass.
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Cross Sections of lonized Iron
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Figure 2.4: Photoelectric absorption cross-sections of ionized iron. Black lines show
those from Fe I (neutral) to Fe XVI (Na-like), red lines from Fe XVII (Ne-like) to
Fe XXIV (Li-like), green lines for Fe XXV (He-like) and Fe XXVI (H-like). Stables
ions, Fe XVII (Ne-like) and Fe XXV (He-like), shown with thick lines. Data taken from
$HEADAS)/../ftools/spectral /xspec/manager/mansig.dat.

The balance of gravity and photon-pressure may be written as

UiLEdd . GMmH

= 2.15
c 4mr? r2 (2.15)
Here, o7 = 6.65 x 10725 cm? is the Thomson cross section (2.10).
Thus,
drcGM  4mc GM
Lpad = = : (2.16)
or/muy KT
Here, w7 is the opacity due to Thomson scattering, ~0.4 cm?/g (2.11), so
4rc® GMg (M M
Lpdd = ~ 1.3 x 10% [ — : 2.17
Edd k&2 ( M@> X < M@> erg /s] ( )

Consider the compact objects, namely white dwarfs, neutron stars and black holes. Max-
imum mass of the white dwarfs is the Chandrasekhar limit, 1.4Mg), that is an average lu-
minosity of neutron stars. Maximum mass of the neutron stars is ~ 3My; more massive
compact objects are black holes. In fact, bright neutron star X-ray binaries have luminosities
of ~ 1038 ergs/s. Galactic black holes have luminosities up to ~ 103 erg/s.

Roughly speaking, neutron stars are more luminous than white dwarfs, and so are black
holes than neutron stars. The more massive black holes become, the brighter.

2.3.2 The compact objects

White dwarfs

e White dwarfs are sustained by the degenerate pressure of electrons, of which maximum
mass is the Chandrasekhar limit that is ~ 1.4Mg.
Chandrasekhar obtained the Nobel prize in 1983.
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Figure 2.5: Mass-radius relations for white-dwarfs (left; Hamada and Salpeter 1961,ApJ, 134,
683) and neutron stars (right; Baym and Pethick ARAA 1979, 415).

Typical mass is = 1M,

Typical radius ~ 6000 km
Remember, white dwarfs are as massive as Sun and as large (or small) as Earth.

There is mass-radius relationship for given abundances and equation of states. More
massive they get, more compact they become (Figure 2.5).

Neutron stars

Typical mass ~ 1.4M

This corresponds to the Chandrasekhar limit of the degenerate core of evolved stars
(progenitors of Type II supernova).

Typical radius ~ 10 km

Central density, an order of ~ 10 [g/cm?], that is the densest matter in the universe.

Maximum mass to sustain by the degenerate pressure of neutrons, ~ 3Mg

There is mass-radius relationship for given abundances and equation of states. More
massive they get, more compact they become (Figure 2.5).

Magnetic and rotating neutron stars are observed as pulsars. Isolated pulsars emit
from radio to y—rays due to synchrotron emission. Binary X-ray pulsars mostly emit
in X-rays.

Typical magnetic fields of neutron stars, ~ 10'? gauss. Magnetars, which are known by
peculiar X-ray characteristics, has magnetic fields as large as ~ 10 gauss.
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Black holes

e Minimum mass, ~ maximum mass of neutron stars ~ 3M,

Dynamically measured most massive stellar black hole; 15.7 My, (M33 X-7)2. The most
massive stellar black hole in our Galaxy; ~ 14M (GRS1915+105).

Using gravitational wave, a black hole merger was discovered, where 36 M and 29M,,
black holes merged, and 62 Mg black hole is created (Abbott et al. 2016, PRL, 116,
061102)

Black hole at Sgr A*, (3.7 4+ 0.2) x 10°[Ry/(8 kpc)]* My (Ghez et al. 2005, ApJ, 620,
744)

Theoretical upper-limit of the black holes created in the stellar evolution; ~ 40Mg
(Fryer 1999, ApJ, 522, 413)

There are “stellar black holes” (~ 10Mg) and ’super-massive black holes” (= 10°M)
in the center of galaxies. It is under discussion if there are “intermediate-mass black
hole” with the mass of 100 — 1000 M)

Origin of Ultra-luminous or Hyper-luminous X-ray Sources (ULXs, HLXSs) in luminosi-
ties of 10%0 ~ 10*? erg/s unresolved yet.

Schwarzschild radius for the object with mass M is 2GM/c? ~ 3(M /M) [km]. Roughly,
this may be regarded as black hole “radius”.

Schwarzschild radius of Earth, ~ 9 mm.
Schwarzschild radius appears in the Schwarzschild metric, that is a solution of the

FEinstein equation. However, it coincides with the radius where the escape velocity
becomes the light velocity in Newtonian mechanics;

1 GM
ivzscape = 0 (2.18)
where, if we put vescape = ¢, We get
2GM
r= a2 (2.19)

Schwarzschild black holes are non-rotating black holes, where the angular momentum
a = 0. Kerr black holes are rotating black holes, where 0 < a < 1.

Terminal spin value, a = 0.998.

’http://chandra.harvard.edu/photo/2007/m33x7/
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2.3.3 More about black holes
Timescale of variation around black holes
Light-crossing time of Schwarzschild radius;

_2GM/c¢*  2GMy/c* M

At
c c Mg

3 km M M M
~ 3% 10km/s My 0 qoar, — S Tmar,

For stellar mass black holes, very high time resolution is needed to study X-ray time-
variation close to the black holes. The RXTE satellite, having a time-resolution of ~ usec,
carried out precise timing study of many bright Galactic black hole binaries and neutron star
binaries.

For AGNs, ~100 sec is sufficient to study X-ray time-variation close to the black holes.
However, since AGNs are not as bright as Galactic X-ray binaries, high sensitivity is needed.
Today, XMM-Newton satellite is the most suitable for this purpose.

Apparent size of black holes

Assuming the distance to a black hole d and the mass of the black hole M, the apparent size
of the black hole (Schwarzschild radius) may be estimated as,

~ 2GM/c* 30 km(M/10Mc)
B d 10 kpe(d/10 kpc)

M ~ 2 x 107 arcsec M.
(d/10 kpc) (d/10 kpc)
We do not know any technologies to achieve such a spatial resolution and resolve Galactic
stellar-mass black holes, at least in the foreseeable future.

On the other hand, let’s consider super-massive black holes, the one in the nucleus in our
Galaxy (Sgr A*), and the other one in a near by AGN, M87. For the black hole in Sgr A*,
d= 8 kpc and M = 3.7 x 10°M,,,

Ad

~ 10716

A0 =~ 8uarcsec.

The black hole in the center of M87 is located at d ~ 18 Mpc (v=0.00437 km/s, H=72
km/s/Mpc), and M ~ 3 x10? M, (Macchetto et al. 1997, ApJ, 489, 579). We see the apparent
size is ~ 3 parcsec.

Currently, sub-mm VLBI offers the best spatial resolution in observational astronomy 2.
In general, spatial resolution of the astronomical instrument is given by

AO =~ \/D,

where A is the observational wave-length and D is the diameter of the telescope, or base-line
in the case of interferometer. Let’s assume X is 1 mm and D is 10,000 km?,

Af ~ \/D = 1[mm]/10,000[km] = 107! ~ 20parcsec.

3http://www.eventhorizontelescope.org/technology/building_a_larger_array.html
“Distance between Mauna Kea in Hawaii and ALMA in Chile.




24 CHAPTER 2. HOW TO INTERPRET THE X-RAY DATA

This may not be sufficient to spatially resolve the black hole in Sgr A* or MS&7.

X-ray interferometer satellites, if technically feasible, will offer the best spatial resolution®.
Let’s assume the base-line of d ~ 20 m, using X-rays with A ~ 1A. The spatial resolution
will be

A~ \/D=1A/20m ~ 5 x 10~ ? ~ 1puarcsec,

which may be sufficient to spatially resolve the super-massive black holes at Sgr A* and M81.

Black hole “densities”

Let’s assume that a black hole is a classical sphere having the Schwarzschild radius R, and
calculate the black hole “density”;

M M\ 2
- ~2x10Y [ — 3

where we used the solar mass M, ~ 2 x 103 [g]. For a 1 M, black hole, which does not exist
in the universe, will have an extreme density ~ 10'® [g/cm?], which is not physical either®.

As black hole mass increases, the density decreases as p o< M 2. Eventually, for super-
massive black holes with M > 108 M, the density becomes less than 1 [g cm ™3], smaller than
that of water! Black holes do not necessarily have high densities.

It is a remarkable characteristic of black holes that the mass is proportional to the radius
(Rs = 2GM /c?), while the mass tends to be proportional to the volume (cube of the radius)
for ordinary matters.

Innermost Stable Circular Orbit (ISCO) and the energy conversion efficiency

In Newtonian mechanics, there are no limits of the minimum radius of the Kepler motion
around the central object. In fact, Keplerian motion with an infinitesimal radius is pos-
sible, where the gravitational potential (—GM/r) shall diverge; the Newtonian mechanics
apparently break here.

In general relativity, there are Innermost Stable Circular Orbit; ISCOO of Keplerian mo-
tion around the central object (black hole), which depends on the angular momentum of the
black holes”.

For Schwarzschild black holes (a = 0),

6GM

> (2.20)

Risco = 3Rs =

When the directions of the black hole spin and the Keplerian motion around the black
hole are the same (prograde motion) Rrsco decreases with increasing the black hole spin.
When a =1,

GM

Risco = 0.5Rg = 2 (2.21)

*http://bhi.gsfc.nasa.gov
SRemember, central density of the neutron star, ~ 10'° [g/cm®] is the densest matter in the universe.
"https://duetosymmetry.com/tool/kerr-isco-calculator
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When the directions of the black hole spin and the Keplerian motion around the black
hole are the opposite (retrograde motion) Rrsco increases with increasing the black hole
spin. When a = —1,

IGM

Risco = 45Rs = = 5.

(2.22)

Let’s consider a case that matter with the mass m falls to the black hole through an
accretion disk. Innermost radius of the accretion disk may be identified with ISCO. Total
energy of the matter E at the ISCO may be roughly estimated with Newtonian mechanics,
as

GMm 1
E~— + —mo?, 2.23
Risco 2 (2.23)
GM
L (2.24)
2R1sco
where v is the velocity and we used the Newtonian equation of motion,
v2 GMm
— = . 2.25
me 2 (2.25)

Namely, for each mass m, the gravitational energy 2%%2”0 is released in the accretion

disk. When the accretion rate is m, the accretion disk luminosity is

Lt QGRI]‘iZ;. (2.26)
In the case of Schwarzschild black hole (a = 0), using (2.20),
Laisk, = %m ¢® ~ 0.08 11 ¢* (Schwarzschild black hole) (2.27)
In the case of extreme-Kerr black hole with prograde case (a = 1), using (2.21),
Laist ~ 0.5 1 ¢? (Extreme Kerr black hole). (2.28)

These simple calculations are based on Newtonian mechanics, which is not correct. Pre-
cisely, using general relativity, these coefficients (=energy conversion efficiencies) will be

1 —+/8/9 ~ 0.057 (Schwarzschild black hole)

and
1 —+/1/3 ~0.42 Extreme Kerr black hole).

Note that black holes, in particular fast rotating black holes, are very efficient mass-
energy converter. Compare with the case of thermal nuclear reaction inside stars; the energy
conversion efficiency is only 0.009 (average from hydrogen to iron).
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2.3.4 X-ray energy spectra
Units of the energy spectra

When we observe X-ray energy spectrum from an celestial object, the unit of the energy
spectrum is ”photon/s/cm? /keV”, before the photons are detected by the satellite. However,
in fact, what we can measure is in the unit of ”counts/s/channel”.

From the observed energy spectrum in ”counts/s/channel”, which is affected by instru-
mental energy resolution and statistical noise (due to paucity of photons), we need to estimate
the incident spectrum in “photons/c/cm?”, which is independent of instruments (but depen-
dent on assumed spectral model). Relationship between them are given by two-dimensional
“response matrix”.

In addition to [counts/s/channel] and [photon/s/cm?/keV], [erg/s/cm? /keV] ([keV /s/cm? /keV])
or erg?/s/cm?/keV ([keV?/s/cm?/keV]) are often used to indicate energy spectra.

X-ray Energy Spectrum of the Crab Nebula

The Crab nebula is often used as a ”standard candle” in X-ray astronomy, since it has a
nearly constant luminosity and simple power-law spectrum in the standard X-ray energy
range (typically 2-10 keV?®).

Within 1 keV ~ 50 keV energy range, the energy spectrum of Crab may be expressed as

f(E) ~ 10 (E/1keV)~*! [photons/s/cm? /keV]. (2.29)

Remember, you get “~10 photons per lcm? per second at 1 keV” if you observed the
Crab nebula.

Crab unit

Historically, energy flux of the Crab nebula (“one Crab”) has been used as a unit of the
energy flux?

Let’ calculate the energy flux of the Crab nebula, which is “1 Crab” in definition. Using
(2.29),

10
/ 10E"2>' BdE =139 keV/s/cm? ~ 2 x 1078 erg/s/cm?. (2.30)
2
Commonly, X-ray energy fluxes of the sources in 2 — 10 keV are expressed in the unit of
“erg/s/ch”
2.3.5 Galactic interstellar space

Typical interstellar density

~ 1 Hydrogen atom/cm?
Using this, distance to the Galactic source d and the hydrogen column density (Ng) has
a rough correlationd N_H ~ 3 x 10%! (d/kpc) cm ™2

8Proportional counters using Ar or Xe have sensitivity in this energy band.
9For instance, “X-ray flux from LMC X-3 in 2-10 keV is variable within ~10mCrab to ~40mCrab”.
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Figure 2.6: Energy spectra displayed in different units. The model is a power-law with £~2
[photons/s/cm? /keV]. In the top ([counts/s/keV]), Suzaku XIS (0.4-12 keV) and PIN (10-80

keV) instrumental responses are adopted.
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Interstellar Magnetic Fields and Energy Density

Typical interstellar magnetic field strength is B ~ 3 GaussO Using (?7), the corresponding
energy density is ~ 3.6 x 10713 erg cm ™3 ~ 0.2 eV cm 30

Energy density of the Cosmic Microwave Background is ~ 0.3 eV /cm3indexCosmic Mi-
crowave Background which is comparable to that of the stellar magnetic energy density.

On the other hand, energy density of Galactic cosmic ray is ~ 1 eV /cm?, which is most
significant energy density in the Galactic interstellar space.

X-ray Absorption and Interstellar Extinction

X-rays are absorbed by photoelectric absorptions by interstellar heavy elements such as C,
N, O, Ne, Mg and Fe. Degree of the interstellar absorption is estimated using the hydrogen
column density, Ny, assuming cosmic elemental abundance. Note that hydrogen and helium
hardly contribute the X-ray absorption.

Meanwhile, optical and infrared lights are affected by interstellar dusts, so the interstellar
“extinction” and “reddening” take place.

Amount of interstellar heavy elements and dusts are correlated, so that there are empirical
relationship between the interstellar extinction and the hydrogen column density ;

Ny /Ay ~ 1.9 x 10 cm™2 mag™? (2.31)
Ng/Aj ~ 5.6 x 10*" cm™ mag™! (2.32)
Ny /Ag ~ 1.1 x 10?2 em™2 mag ™. (2.33)

As you go to the longer wavelength (V' — J — K), the hydrogen column densities required
to extinguish the light by one magnitude will be larger. Namely, you will be able to observed
the Galactic plane “deeper”.

Interstellar Extinctions and Optical Depths

Let’s assume the interstellar extinction A, and the corresponding optical depth is 7. Let’s
put the flux and magnitude before affected by the extinction are f3, mp, and those after the
extinction are f,, mq.

fo=foe ™
myp = —2.5log fy + C,mg = —2.5log fo + C

Thus,
A=mg—mp =25log(fp/fa) =257 loge=1.097 ~ 7. (2.34)

Namely, amount of the dust to reduce the light by 1 magnitude has the optical depth ~unity.

Penetrating Power of X-rays and K-band Infrared-light

From (2.33) and (2.34), we can see that the interstellar dusts which reduce the K-band
infrared-light by 1 magnitude (7 ~ 1 in K-band) correspond to Ny ~ 1.1 x 10?2 cm~2. X-ray
photo-absorption cross-sections by interstellar-matter are calculated (Figure 2.7), and it is
~9 x10723 cm? at 1.5 keV. Namely, the interstellar matter with Ny ~ 1.1 x 10%2 cm™? gives
7= 1 also at 1.5 keV.
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Figure 2.7: X-ray cross-sections of interstellar matter (from Morrison and McCammon, 1983,
AplJ, 270, 119).

Consequently, the K-band infrared-light and 1.5 ke V X-ray have similar penetrating power

toward the Galactic plane. Thus, Galactic X-ray sources are often followed-up by K-band

infrared observations, where optical counterparts are not visible due to heavy extinction'®.

10See e.g, Ebisawa et al. 2015, ApJ, 635, 214; Morihana et al. 2016, PASJ






Chapter 3

Basic of Accretion Disk

3.1 X-ray Astronomy and the Standard Accretion Disk

Look at the text book "High Energy Astrophysics” by Katz, which was published in 1987:
‘There are few astronomical objects in which the continuum radiation from an accretion disk
can be unambiguously identified. ... The theory of discs is in a much more primitive state
than that of stars. This resembles the problem of stellar structure prior to the development of
nuclear physics in 1930’s. We may be worse off than this, because so few direct observations
of discs are possible. ... It may be appropriate to compare our present understanding of
discs to Galileo’s understanding of sunspots and solar activity.” Surprisingly, this was the
situation regarding observation of accretion disks in med 1980’s.

The Japanese Ginga satellite, which was operational from 1987 to 1991, confirmed that
several Galactic black hole binaries, including LMC X-3, GS2000+25 and GS1124-68', have
rather constant innermost disk radii while their luminosities are largely variable (in other
words, the disk luminosity is proportional to the disk temperature to the power of fourth),
and the innermost radius is about the size of three times Schwarzschild radius; ISCO in the
Schwarzschild black hole (eq. 2.20; Figure 3.1).

Ginga confirmed that the standard optically thick accretion disks do exist in Galactic black
hole binaries. “High Energy Astrophysics” second edition (1994) by Longair states as follows;
“This is a remarkable result, but it is clearly dependent upon a number of assumptions,
particularly that the accretion disk is optically thick.” In fact, before Ginga, presence of the
optically thick accretion disk around Galactic black holes was not certain. Following Ginga,
RXTE and other satellites have confirmed presence of the remarkably constant innermost
radius of the optically thick accretion disk, which is identified as ISCO (Figure 3.2).

3.2 Accretion Disk Models as Mathematical Solutions

Accretion disk models are obtained by solving equations of gravitation, pressure balance,
radiation etc. Those solutions are often indicated on the 2-dimensional plane of surface
density ¥ [g/cm?] and mass accretion rate M [g/s] (Figure 3.3).

In Figure 3.3, the line H = r indicates the height (H) and radius (r) of the disk are
equal; closer to this line, the disk is geometrically thicker, further from this line, the disk is

LGS stands for Ginga Satellite.

31
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Figure 16.22. Time histories of the best-fit parameters to the soft component of the X-ray
spectrum of LMC X-3 obtained by the Japanese Ginga satellite. (a) The bolometric
luminosity of the sources; (b) the inferred temperature at the inner radius of the
acceretion disc; (¢) the inferred inner radius, ry, of the accretion disc. i is the inclination
angle of the plane of the orbit to the plane of the sky. (From H. Inoue (1992). Proc.
Texas/ESO-CERN Symposium on Relativistic astrophysics, cosmology and fundamental
particles, eds J.D. Barrow, L. Mestel and P.A. Thomas, pp. 86-103. New York: New
York Academy of Sciences.)

Figure 3.1: Spectral variation of LMC X-3 observed with Ginga. Top panel indicates the d%sk
luminosity, the middle panel is disk temperature, and the bottom panel is the innermost disk
radius, where model fit was made with the innermost disk radius (r;,) and the temperature
(Tn) being free parameters. The disk luminosity is derived as Lg;sk r?n Tﬁl (eq. 3.15).
Taken from Longair, “High Energy Astrophysics, volume 2” second edition (1994), together
with the figure caption, which cites the original Ginga paper.
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Figure 3.2: Accretion disk luminosity (top) and innermost radius (bottom) of LMC X-3
observed by various satellites including Ginga. Taken from McClintock, Narayan and Steiner,
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Figure 3.3: Mathematical solutions of accretion disks on the log ¥ vs. log M plane. Taken
from Kato, Fukue and Mineshige “Black-hole Accretion Disks”. Labels correspond to section

numbers in the book.
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geometrically thinner. If you go right-hand side, the surface density is larger and the disk is
more optically thick; in left-hand side, the disk is optically thinner.

Labels in Figure 3.3 correspond to sections in the book, particular states of the accretion
disk; §3.2 corresponds to the ”Optically Thick Disks”, which is so-called the standard ac-
cretion disk model. Observationally, this explains X-ray emission in the “high/soft” state of
Galactic black hole binaries, where the innermost radius corresponds to ISCO (Figures 3.1,
3.2; section 3.5). §3.3 is the ”Optically Thin Disks”, which is thermally unstable.

§5.1 corresponds to ” Thermal-Ionization Instability”, such that the hydrogen is ionized in
the upper-branch and not ionized in the lower-branch. The “limit-cycle” takes place between
the two branches, which explains “dwarf novae” observed in optical and UV lights in terms
of the “disk instability model”.

§5.3 corresponds to ”Emission-Line Formation during Quiescence”, which corresponds to
the quiescence state of dwarf novae, when the Doppler-shifted emission lines are observed
from the accretion disk.

§10.1 is the ”Radiation-Pressure-Dominated Disks”, which is optically thick and the ad-
vection is dominant. This is also coled Optically thick Advection Dominated Accretion Flow
(ADAF), or “slim-disk”. Slim-disk may explain the Ultra-Luminous X-ray (ULX) sources
(section 3.7).

§10.2 is the ”Optically-Thin One-Temperature”, or optically thin ADAF, corresponding
to hot, optically thin, and geometrically thick disk, which is considered to to explain the
low/hard state of the black hole binaries.

§11.3 is "Relaxation Oscillations in Hot Accretion Disks”, which explains limit-cycle os-
cillation between the slim-disk state and the standard-disk state, which presumably explain
the quasi-periodic variations observed from GRS1915+105.

§11.4 is ” Advection-Dominated Flow in X-ray Novae”, which explain the transition be-
tween the high/soft state and the low/hard state of black hole binaries.

3.3 Thickness, Temperature, and Potential of the Disk

Consider the accretion disk where gas-pressure is dominant. Assuming pressure P, density p,
temperature 7' and the gas particle mass (mostly hydrogen) m, the equation of state gives,

_pkT
S

(3.1)

Assuming the height of the disk, h, gravitational balance in the vertical direction gives,

ar __GMph
dh r2 r’

We may estimate orders of the parameters such as,

P GMp

h r r2

Combining (3.1) and (3.2), we get

% ~ (i‘)Q (3.3)
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Look at the left-hand side; the denominator gives the gravitational potential of a particle,
and the numerator is the thermal energy. Namely, we can see that geometrically thin disk
(h/r < 1), which is the case for the standard accretion disk (section 3.4), gives the thermal
energy (disk temperature) much lower than the gravitational potential energy of a particle,
and that geometrically thicker disk gives higher disk temperature.

The gravitational energy of a particle around a black hole may be estimated at the
Schwarzschild radius Rg = 2GM/c?, such that,

GMm GMm

2
= =~ ~1 4
R 2GM/C2 me GeV, (3.4)

whereas typical standard disk temperature of Galactic black holes is ~ 1 keV (section 3.5.3),
that is much lower, in fact.

The geometrically thin and cool disk corresponds to the high/soft state of the black hole
binaried] §3.2” Optically Thick Disks” in Figure 3.3), and the geometrically thick and hot disk
corresponds to the low/hard state (§10.2 ” Optically-Thin One-Temperature”). The slim-disk
(§10.1) is hotter and geometrically thicker than the standard accretion disk, which may
explain the relatively high temperature (hard X-ray energy spectra) of the Ultra-luminous
X-ray sources.

3.4 The Standard Accretion Disk Model

The paper by Shakura and Sunyaev (1973, A&A, 24, 337) is historical, where the “standard
accretion disk model” is established?. Here, accretion disk solutions are obtained assuming
that (1) the disk is optically thick and geometrically thin, (2) the released gravitational energy
is converted to the radiation (no advection), and (3) the viscous tensor is proportional to the
viscous parameter « and the pressure (eq. 3.7).

In short, there are 11 equations to connect the following 11 parameters of the disk. For
given M, M, «, the 11 parameters are solved as functions of the disk radius 7.

1. Q= \/C;:? — angular velocity by Keplerian motion
2. h — disk height

3. X — disk surface density

4. p — disk density

5. v, — vertical velocity

6. T. — temperature inside (mid-point) of the disk

7. 7 — disk optical depth in the vertical direction

8. v — kinematic viscosity

9. vs —sound velocity

2As of June 6, 2016, ADS shows 7521 citations.
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10. p — disk pressure

11. K — average opacity

In particular, the six parameters following Q are obtained as functions of M, M, a,r, with
which the rest four parameters are expressed.

3.4.1 Rotation velocity and infall velocity

While rotating in the disk with Keplerian motion, the matter gradually falls toward black hole
due to kinematic viscosity. The viscous tensor which works between the azimuthal direction
and the radial direction is written as

trp B2 PULLY A P UMV, (3.5)

where p is density, v, is the turbulent velocity, v, is the radial velocity, v,(= \/GM/r) is
the azimuthal velocity.
We may assume that the turbulent velocity is smaller than the sound velocity, vs = \/P/p,
so that
tro S pvz =P (3.6)

It is remarkable that Shakura and Sunyaev (1973) defined the viscous parameter « as
tro = aP, (3.7)

where « takes values between 0 and 1, P is pressure. Due to eq. (3.7), equations of standard
accretion disk can be solved?.
From (3.5), (3.6) and (3.7),

. ”;:;@ (3.8)

Using (3.2),
% ~ G]:M% ~ vii—g (3.9)

Since P/p ~ v2,
U R Vs (%) . (3.10)

In the standard accretion disk, which is geometrically thin, r/h > 1, so that the rotation
velocity is much larger than sound velocity. Also, from (3.8) and (3.10),

h h\’
R U | — | & - . 11
Up R QU <r> av, (r) (3.11)

Namely, the in-falling velocity will be higher as « gets greater, but it is much smaller than
the rotational velocity even at the maximum (o = 1).

3Today, the viscosity is considered to be caused by magneto-viscous effects, and Magnetic Hydro-Dynamics
(MHD) simulation can solve accretion disk equations without o and eq. (3.7.
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3.5 X-ray Emission from the Standard Disk

3.5.1 Radial dependence of the disk temperature

Let’s consider the standard accretion disk around a black hole having the mass M, where the

mass accretion rate is M. While matter falls dr in the disk, half the gravitational potential

is released (Virial theorem), the disk is thermalized, and converted to the emission.
Assuming the black body emission from both surfaces,

2. 21rdroT* ld — GMM = GMM dr,
2 r 272
aynr )
T . 12
(r) o (87r07’3 ) (3.12)

In the above equation, the radial dependence is correct, but the inner-boundary condition
is not taken into account. If we consider the inner-boundary condition (zero temperature at
the innermost radius), the precise equation is,

8mwor3

) 1/4
T(r) = (3GMM (1 - \/rin/r>> . (3.13)

In any case, emission from the innermost region is not significant because of the low
temperature and the small area. It is essential that the disk temperature is proportional to
r=3/4 in the standard accretion disk*.

3.5.2 Luminosity of the multicolor blackbody disk

Ignore the inner-most boundary condition, and assume the radial dependence of the temper-
ature T'(r) oc r~3/%. Consider the accretion disk which emits the black body emission at each
radius with the temperature T'(r). This model is called “multicolor disk blackbody” model,
which is simple but explain the observations sufficiently enough

Let’s obtain the luminosity of the multicolor disk blackbody model. Assuming the inner-
most radius and the temperature r;, and Tj,,

T(r) = Tin (r/rin) "/ (3.14)

Considering both surfaces and integrating from the innermost radius to the outer edge (7out),
we get

Tout
Lgisk = 2/ 27T7“UT(7")4d7“
Tin
Tout
= droTlhrd, / r2dr
Tin

= Ao T rd (1/rim — 1/Tou) ~ dmord T} (3.15)

in'in in-ino

where, we assumed 7oyt > Tin.-

“As the mass-accretion rate increases, the disk will be “slim disk” and the exponent varies from —3/4 to
—0.5.
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3.5.3 Maximum disk temperature around black holes

Let’s estimate the maximum disk temperature, T;,, in the case of Schwarzschild metric.
Now, Rrsco = 3Rs (eq. 2.20), which may be identified as r;, in (3.15). We assume that
the standard accretion disk is shining at the Eddington limit, which is a valid assumption
(section 3.7).

From
4r e GM
Lpas = =~ =470 (3R)’ T}, (3.16)
r o~ (—C\ (26M T T
"\ 180k c2 M,
A -1/ Mo\ A
~2keV | — ~ 1 keV . 3.17
‘ (M®> © (10M®) (3.17)

Namely, the standard accretion disk around a ~ 10Mq black hole shining at the Eddington
limit has the temperature ~ 1 keV, to be observed in the X-ray band.

Note that the maximum accretion disk temperature decreases as the black hole mass in-
creases as o< M~/4 (eq. 3.17). For instance, the super-massive black hole with M = 10° M,
has the maximum disk temperature ~ 10 eV, which may be observed in the UV band. This
is considered to be origin of the UV-bump often observed in the Active Galactic Nuclei.

3.6 Measurement of the Black Hole Spin

From eq. (3.16), we see Tj, will be higher for smaller Rrsco. Namely, rotating black holes
(0 < a < 1), having smaller Rrsco (eq. 2.21), will have higher disk temperature. Retrograde
disk, where the disk is rotating in opposite direction to black hole, R;sco is larger than
the Schwarzschild case (eq. 2.22), and the disk temperature will be lower. Accretion disk
temperature is measured in X-ray, where relativistic effects should be taken into account to
precisely compare the X-ray observation and the accretion disk model®. For the Galactic black
hole binaries of which distance, mass and inclination angles are known, X-ray observation can
constrain Rrsco, and thereby the black hole spin. See for details, e.g., McClintock, Narayan
and Steiner, 2014, Space Science Reviews, 183, 295; Morningstar et al. 2014, ApJ, 784, L18.

3.7 Maximum Luminosity of the Slim-Disk

We have seen that luminosity from the spherically accreting and emitting object is limited by
the Eddington limit (section 2.3.1). Let’s consider maximum luminosities of accretion disk
which is obviously not spherically symmetric.

Considering balance in the vertical direction, assuming the flux per disk area F,

FJT < GMmHﬁ

2 I

; (3.18)

C T

5The relativistic effects are significantly dependent on the disk inclination angle.
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where o7 is the Thomson cross-section and mp is the hydrogen mass. The disk luminosity,
Lg;si may be obtained by radially integrating F' for both surfaces from r;, to 7out;

Tout

Ly, = 2 % 27r/ rFdr. (3.19)
Tin

Consequently,

——dr

rr

drecGMmpyg [Tt 1h
Lgisky < ————— /
,

or

in

R\ [T 1 h
~ LEdd <> / —dr =~ LEdd () In <Tout> s (3.20)
r Tin r T Tin

where we made an assumption that h/r = const.

Approximately, In(ryy:/rin) ~ 10, thus geometrically thin standard disk O h/r ~ 0.10
gives Laisk, < Lpdd-

On the other hand, when the disk is geometrically thicker( h/r ~ 10, Lgsk < 10Lgqq,
namely, the disk can have super-Eddington luminosities. Hence, slim-disk, which is optically
thick and geometrically thicker than the standard disk, can emit super-Eddington luminosi-
ties, and considered to explain the Ultra-Luminous X-ray sources (ULXs) with 1040~4 erg /s,
that cannot be explained by stellar-mass black holes with sub-Eddington luminosities.







Chapter 4

Astronomical Observation using
Artificial Satellites

In order to observe Universe in X-rays, we need to go to space, since we cannot observe from
ground. Similarly, UV, far-infrared, gamma-ray observations are carried out from space.
Even in optical wave-length, there is a merit to observe from space, since the atmospheric
seeing does not exist in space!. Let’s learn how to observe using astronomical satellites.
First, we need to learn different celestial coordinates. Then, we learn satellite attitudes and
orbits. This is necessary to understand the Attitude and Orbit Control System (AOCS) of

the satellite, which is critical for satellite operation/observation.

4.1 Celestial Coordinates

In astronomy, we adopt a virtual celestial sphere to consider apparent locations on the sky.
We are at the center of the sphere, and if we extrapolate the spin-axis of the earth, we may
define the North pole of the celestial sphere. If we extrapolate the equator of the earth, we
may define the Equator of the celestial sphere.

The spin-axis of the earth is not perpendicular to the orbital plane of the earth, but
tilted by 23.°44%20 Path of Sun on the celestial sphere is ecliptic , which is inclined by 23.°44
relative to equator. Crossing points of the equator and the ecliptic are the spring equinox
(Sun crosses the equator from south to north) and the autumn equinox (Sun crosses the
equator from north to sought). The point on the ecliptic where Sun is the most north is
summer solstice, and the point on the ecliptic where Sun is the most south is winter solstice.
Spring equinox, autumn equinox, summer solstice, winter solstice are terminologies for the
locations on celestial sphere, as well as for the corresponding dates in calendar.

Like global longitude (0° ~ 360°) and latitude (—90° ~ 490°), we define Right ascension

!Typically, atmospheric seeing blurs a star about 1” in optical band. If you need better spatial resolution
in optical band, you either need to go to space or use adaptive optics.

2The inclination varies from 22.°2 to 24.°5 at a period of 41000 year, and the spin axis shows a precession
such that the spin axis rotates around a fixed axis with a period of 25800 year. Thus, the equatorial coordinates
change with time, and we must specify which equinozr we are referring to. Today, commonly equinox 2000 is
used (J2000). A few tens of year ago, it was more common to use the equinox 1950 (B1950). In a few tens
of year, equinox 2050 will be more common. As an example, location of the black hole binary Cyg X-1 is
(299.°590, 35.°201) (J2000), or (299.°120,35.°065)(B1950).

41
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Figure 4.1: Celestial sphere, equator, ecliptic

(0° ~ 360°) and Declination (—90° ~ +90°) on the celestial sphere. Like the location of
the Greenwich observation is at the global longitude 0°, origin of the Right Ascension is the
Sprint equinox. In this manner, Equatorial Coordinates are defined 30 Similarly, we may
define the Fcliptic Coordinates, based on the ecliptic plane and ecliptic poles.

Similar to the earth surface, we use north (direction of North Pole), south (direction
of Sought Pole), east (direction of increasing the Right Ascension) and west (direction of
decreasing the Right Ascension) on the celestial sphere. Be careful that directions of east and
west are opposite on the earth (we are outside of the globe) and on the celestial sphere (we
are inside of the sphere). On a map of the earth, when north is up, right is east; on a map
of the celestial sphere, when north is up, left is east.

Also, we often use Galactic coordinates, which is based on the Galactic Plane (Milky
Way). Direction of the Galactic center is the origin, where Galactic Longitude and latitude
is (0,0). The Galactic latitude increases as you go left on the Galactic plane. ,

Any positions on the celestial sphere may be expressed with Equatorial Coordinates,
Ecliptic Coordinates, or Galactic Coordinates. Figure 4.2 shows presents grids of all the

3Since rotation of the celestial sphere is used as a “clock”, we may express the Right Ascension from 0 hour
to 24 hour, instead of 0o to 3600. In this case, an hour corresponds to 15°. As usual, an hour is 60 minutes, and
a minute is 60 seconds. Using hh, mm, ss for hour, minutes, and seconds, Right Ascension may be expressed
as hh:mm:ss.s. Also, one degree is 60 arcmin, and 1 arcmin is 60 srcsec, namely, 1° = 60", 1" = 60" .

In this manner Right Ascension and Declination of a celestial target may be written as (281.°00,—4.°07) or,
identically, (18 : 44 : 0.0,—4°4'12")



43

00¢ oS¢

il

\
i

|
/
|

a @ ClE sl

SAEiE 1, <y

at
S

e SRl

ha ] A

TS

S

N eV g
NN
q

A

T ay > —
‘ 7 WA T 1T
PR
| 1 \%
X Hh

YNINREEirdi

4.1. CELESTIAL COORDINATES

UoISdI2AUOD 2130D|Pp9—213dI|23—|PplJoipnbg

06—
u013DUI35(]

0G
Figure 4.2: Equatorial coordinates, Ecliptic coordinates, and Galactic coordinates
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three coordinates 4.

For example, the following coordinate indicates the same position; °.

(RAO DEC)=(a, §)=(281.°00, —4.°07)
(Galactic longitude, Galactic latitude)=(l, b)=(28.°463, —0.°204)
(Ecliptic longitude, Ecliptic latitude =(\, 5)=(281.°608, 18.°927)

Below, we consider how we calculate these coordinate conversions®.

4.2 Satellite Attitudes

4.2.1 Satellite Axes and Satellite Coordinate

Consider the “satellite coordinates” XYZ, which is fixed to the satellite (Figure 4.3). Science
satellites developed at JAXA /ISAS have such a definition of the satellite attitude that the
spin axis and the telescope are along the +Z-axis, the solar-panel is toward the +Y-axis.
You should be careful that the definition of the satellite coordinate is dependent on different
satellites or institutes.

The solar-panel should be toward the sun to produce electric power, and the Sun moves
on the ecliptic with season. Consequently, the observation targets (+Z-axis) should be on
the great circles which are orthogonal to the ecliptic. Also, we can see that North Ecliptic
Pole (NEP) and South Ecliptic Pole (SEP) are always observable all year around.

Some satellites, such as ROSAT (X-ray) and Akari (infrared), carry out all-sky survey,
continuously spinning around the Y-axis. These scan paths are the great circles through
NEP and SEP. See, example, http://apod.nasa.gov/apod/ap000819.html, http://www.
ir.isas.jaxa.jp/AKARI/Archive/Images/FIS_A11SkyMap/. You can vaguely see many
scan-paths, which concentrate on the NEP and SEP.

The ASCA satellite was not designed for all-sky survey, but the attitude maneuver or
slew are performed always facing the Y-axis toward the Sun. Consequently, the large attitude
maneuver /scan paths are along the great circles through NEP and SEP. In Figure 4.4, we show
exposure map (exposure time on each sky pixel) of the ASCA slew operations throughout
the mission period (from 1993 to 2000) in the Galactic coordinates and ecliptic coordinates.
We can see that NEP and SEP are most exposed as well as Galactic plane region.

4.2.2 Satellite attitudes and Euler angles

Satellite attitudes relative to the sky coordinates are described with the “Fuler angles”. Let’s
put the initial attitude of the satellite that the +Z-axis is toward the North-pole, +X-axis is
toward the sprint equinox. We sequentially rotate the satellite by ¢ around +Z-axis, 6 around
the +Y-axis, and ¢ around the +Z-axis. Now, the resultant satellite attitude is represented

4The Fortran program to draw this figure is put at http://www.isas.jaxa.jp/home/ebisawalab/ebisawa/
TEACHING/2007Komaba/PlotCoordinates.f Here, I used the pgplot library.

»»GALACTIC_RIDGE” observation with Suzaku. See, http://darts.jaxa.jp/astro/tables/SUZAKU_
LOG.html, where the sequence numbers are 500009010 and 500009020, and the Euler angles are
(281.0000,94.0700,184.4698).

SThere are many tools available to carry out the coordinate conversion. For instance, http://heasarc.
gsfc.nasa.gov/cgi-bin/Tools/convcoord/convcoord.pl.
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Z (toward target)

X-ray telescope
(works as a lense
or pin-hole)

>Y

(toward Sun)

Figure 4.3: Satellite coordinates and field of view.
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Figure 4.4: Exposure map of the ASCA slew survey in the Galactic coordinates (top) and
the ecliptic coordinates (bottom). Taken from “ASCA Slew Survey”, Ebisawa, Fujimoto and
Ueda 2003 (DOI: 10.1002/asna.200310058).
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with (¢, 0,1) Euler angles with ZYZ rotation. Remember, definition of Euler angles is not
unique, and we need to specify the the order and axis of the rotation. In any case, any
satellite attitudes can be represented with three angles.

Let’ consider relationship between the Euler angles and field of view of the satellite.
Put the ZYZ Euler angles (¢,6,1), and the telescope is pointing the +Z direction. Right
Ascension and Declination of the pointing direction are given as

R.A. = ¢, Dec. =90° — 6. (4.1)

The third Euler angle 1 determines the roll-angle of the field of view. Commonly, we
measure the roll-angle from North toward the instrument +Y-axis (DETY) counter-clock-
wise”[]

Relation between the third Euler angle and roll-angle is given by®

Roll = 90° — 1. (4.2)

4.2.3 Observation and season

When observing with satellites, the first two Euler angles are determined from the target
position. The third Euler angle is constrained from the condition that the Solar-panel (+Y-
axis) is toward the Sun. Consequently, when the same target is observed at different seasons,
the third Euler angle is different in different seasons.

NEP is a popular area to observe, since it is observable all the year round. Let’s consider
the Euler angles to observe NEP in different seasons. Ecliptic is tilted by 23.°4 relative to the
its equator, where they intersect at the spring equinox and the autumn equinox (Figure 4.1).
Namely, if we rotate the equatorial coordinates (x-axis toward the spring equinox, the z-axis
is toward the north pole) by 23.°4 around x-axis, you will get the ecliptic coordinates (x-axis
toward the spring equinox, the z-axis is toward the NEP) . You can see that the equatorial
coordinates of the NEP is («, §) = (270°,66.°6) (see also Figure 4.2). Since we use ZYZ Euler
angles to describe the satellite attitude, the first two Euler angles are ¢ = 270°,6 = 23.°4.
Starting from the initial attitude (+X toward spring equinox, +Z toward the North pole),
note that now the satellite Z-axis is toward the NEP, and Y-axis is toward the spring equinox.
According the the third Euler angle ¢ around +7Z axis, the +Y axis move on the ecliptic with
the same direction of the Sun. Now we can tell the third Euler angle to observe the NEP
depending on season”:

At sprint equinox, ¥ = 0°

At summer solstice, 1 = 90°
At autumn equinox, v = 180°
At winter solstice, ¢ = 270°0

Let’s look at actual example of the NEP observation with Suzaku. Here are the dates
and Fuler angles of the Suzaku NEP observations with sequential numbers:

"Be careful that this is opposite on the earth, where the directional angle, or CAP, is measure clock-wise
from North.

8This is illustrated with animation in http://www.isas.jaxa.jp/home/ebisawalab/ebisawa/TEACHING/
roll-angle.ppt.

9 Assuming that the solar-panel (Y-axis) completely faces toward the Sun. In fact, the solar-panel can be
slightly off the Sun within the allowance technically determined (Solar-angle).
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2013-11-14 (270.08, 23.40, 232.40), sequence number =708014010
2009-11-15 (270.05, 23.44, 232.82), sequence number =504070010
2009-12-07 (270.05, 23.43, 255.35), sequence number =504072010
2009-12-15 (270.05, 23.43, 261.93), sequence number =504074010
2009-12-28 (270.04, 23.42, 284.63), sequence number =504076010
2015-01-30 (270.03, 23.43, 307.48), sequence number =109016010
2015-02-03 (270.04, 23.42, 307.48), sequence number =109016020
Also, please note that the instrument field of view rotate clock-wise with season, since the
Euler angle increases with season and the roll-angle decreases (eq. 4.2) .

4.3 Coordinate Conversion and Euler angles

4.3.1 Directional vector and coordinate conversion

Consider the directional vector with the unit-length toward the direction («, §) in the equa-
torial coordinates. The xyz coordinates are as follows;

T cos d cos
y | = | cosdsina |. (4.3)
z sin

Confirm 22 + y? + 22 = 1. Assuming the base vectors of the z,y, z-axes being ey, ey, ey,
we may write,
T
p =zex +yey + ze, = (ex,ey,€e,) | ¥y |. (4.4)
z

', €., e,. Similarly,

Let’s put ecliptic coordinate three axes as 2’,y’,2’, and base vectors ey, e{, e],.

the Galactic coordinate three axes x”,y",2"”, and base vectors ey, ey, e].
The same directional vector (4.4) can be expressed with the ecliptic coordinate or the

Galactic coordinates;

T T T
p= (exaeyv e;) Y = (egve;?e/z) Y = (927957 e/z/) y" : (4.5)
. o "

If we put the Galactic coordinates of p as ((,b),

cosb cosl
= | cosb sinl |. (4.6)
sin b

This can be solved for [ and b, that

tan1 (4" /")
< ll) ) - ( tan~! <z"/ yx”2 +y”2) > : (4.7)

In summary, in order to convert the equatorial coordinates («,d) to the Galactic coordi-
nates (I,b), first obtain the (z,y, z) components with (4.3), convert to (z”,y", 2") with (4.5),
then use (4.7).
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4.3.2 Orthogonal transformation and orthogonal matrix

Consider orthogonal transformation from the orthogonal coordinate system represented with
the base vectors (e1, ez, e3) to that represented with (€}, e, €j3).
Since base vectors are orthogonal,

91226222832:1,91-92292'83293'61:0 (48)
2 2 2
el =ey =€y =1,e]-eh, =ey-e5=e5-e| =0. (4.9)

Base vectors of the one system are represented with those of the other system.

e’l = ajj€e1 + aijge2 + ajzes, (410)
6,2 = ag1€1 + a99€e2 + aszes, (4.11)
e’3 = az1e1 + azge2 + aszszes, (4.12)

or, equivalently,

app az a3
(e1.€5.e5) = (e1,ez,e3) | a1z ax aszx |. (4.13)
a3 azz as3

From the condition (4.9), we see the following constrains among the elements of the
conversion matrix;

af; + afy + aly = 1,43, + a3y + a3z = 1,a3; + a3y + a3z = 1, (4.14)

aii1az1 +aiga +aizas = 0, aziasi +ageass +aszazs = 0, aziai1 +azzaiz +aszaz =0 (4.15)

If we take the inner product of (4.10), (4.11), (4.12) and ey, e2, €3, we can see

/ / /

€e;-e1 =aji, €1 ez = a2, €1 -re3z = ais, (416)
/ / !

62 €1 = a1, 62 €2 = a29, 62 - eg = ag3, (4.17)
/ / !

€3 - €1 = a3y, eg - e2 = a3z, €3 €3 = a3s3. (4.18)

Namely, nine elements of the conversion matrix defined by (4.13) are the direction co-
sine between the three base vectors before the conversion and three base vectors after the

conversion.
Similarly, inverse of O (4.10),(4.11),(4.12) may be obtained as,

/ / /

€1 = ajie; + a21€ey + azeg, (419)
/ / /

€2 = a12€7 + a22€5 + azoegy, (4.20)
/ / /

e3 = a13€; + ag3ey + azszeg, (4.21)

or, equivalently,

ailr a2 ai3
(el, [SH 83) = (e’l, 6/2, e%) ag21 agy as3 . (4.22)
azr asz2 az3
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From the condition (4.8), corresponding to 4.14), (4.15), we get
aiy + a5y + a3y = 1,afy + a3y + a3y = 1,075+ a33 +a33 = 1 (4.23)
0
ai1a12+ag1aze +aziazz = 0,a12a13 +a2a23 +az2asz = 0, a13a11 +az3a21 +azzaz = 0. (4.24)

If we compare (4.13) and (4.22), we can see that the transpose of the conversion matrix
is the inverse-matrix. In fact, this is one of the characteristics of the orthogonal matrix.

4.3.3 Notation of orthogonal matrix and transformation

We introduce Kronecker’s delta;

=)
si={0 (77 (4:25)

Also, we introduce a rule to sum over the same indices in an equation (omit the ¥ symbol).
In this manner, (4.8),(4.9) may be written as,

ej - ej = (51']', e; . 63 = (513 (4.26)
Also, the following relations hold;
e - ej = ajj, € = a;€j, € = aji€;, (4.27)

Aikjk = Oij, AkiQlj = Oij- (4.28)

4.3.4 Scalar triple product and determinant

There is another important character of the orthogonal matrix; the determinant of the 3 x 3
orthogonal matriz is unity. Let’s take a look.
Let’s review basic vector analysis. Outer product of the three dimensional vectors A and
B is written as
O =A xB. (4.29)

O is orthogonal to both A and B, toward the direction when a screw is rotated from the
direction of A to B, and the length is |A||B|sinf where 6 is the angle between A and B
(area of the parallelogram made with A and B). The three components of O are

O A,B. — A.B,
0, | =| A.B.—A,B. |. (4.30)
0. A,B, — A,B,

In general Scalar triple product of the vectors A, B, C is defined as

A - (BxC)=B-(CxA)=C-(A x B). (4.31)
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When the vectors A, B, C forms the right-handed coordinates, the scalar triple products
give volume of the parallelepiped formed by these vectors. The scalar triple product of may
be written as,

A-(BxC)=A,B,C, + AyB.Cy + A,B,C, — A,B.Cy — A B,C., — A,B,C,  (4.32)

A, A, A, Ay By C.
=|B. B, B.|=|4, B, C, |, (4.33)

where |A| gives the determinant of the matrix A. The parallelepiped formed by the base
vectors eq, ez, eg or €, e5, €4 is a cubic of which the each side is unity and thus the volume
is unity. Consequently, the scalar triple product of the unit vector, or determinant of the
conversion matrix is unity.
ail a2 a13
asy ago ag3 =1 (434)
azr a3z as3
Equivalently,

(11022033 + 012023031 + A13021A32 — (13022031 — 12021033 — A11023a32 = 1. (4.35)

4.3.5 Coordinate conversion

Combining (4.5) and (4.22),

x ai; a2 a3 x x
P=(ex,ey,e) | ¥ | =(e,¢€},€,) | aa axn ass y | = (e, e,e,) | v
z azy azz asz z 2
(4.36)
Consequently,
! ai; a2 a3 x
y’ = a21 22 a3 y . (4.37)
2 azy azz as3 z

This relation gives the conversion between the three components (z,y,2) and (2/,y,2’) in
the two coordinates.
U

4.3.6 Euler angles and coordinate conversion

Let’s consider the ZYZ Euler angles. When rotated ¢ around z, let’s put the new axes x'y’z’
(of course, z = 2’)0Next, when rotated 6 around ¢/, let’s put the new axes x”y"”' 2" (of course,
y' = y’)OFinally, rotate ¢ around 2", then we get 2"y’ 2"". The Euler angles (¢, 0, ) gives
the coordinate conversion from the zyz coordinates to the z”’y"2"”" coordinates.

The conversion matrices given (4.13) or (4.22) can be expressed using the Euler angles.

The first rotation around z-axis gives the following;
cos¢p —sing 0

(€],e5,e5) = (e1,ez,e3) [ sing cosgp 0 |. (4.38)
0 0 1
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Similarly, 6 rotation around 3’ axis gives,

cos@ 0 sinf
(e, e5,e3) = (e, ey, €5) o 1 0 . (4.39)
—sinf 0 cosf

Finally, 1 rotation around 2" axis gives,

cosy —siny 0
(e’ ez, e3) = (e1,e3,€5) [ siny) cosyp 0 |. (4.40)
0 0 1

We may combine these three equations;

cos¢p —sing 0 cos 0 siné costyp —siny 0
(e, ey es) = (e1,ea,e3) | sing cosp 0O 0 1 0 siny costy 0
0 0 1 —sinf 0 cosf 0 0 1

(4.41)

cos ¢ cosf cosyp —singsiny —singcosyy — cos@cosfsiny cospsind
= (e1,ez2,e3) | sin¢gcosfhcost) + cospsiny  cospcosih —singcosfsiny  sinpsinb
—sin 6 cosy sin 6 sin ¢ cos 6
(4.42)
This is an orthogonal matrix, which satisfies (4.28) and (4.34).

4.3.7 Conversion from equatorial coordinates to ecliptic coordinates

Ecliptic coordinates are given with rotation around x axis (pointing the sprint equinox) by
0 = 23.°43929. Here, the original base vectors are ey, ey,e,, and the new base vectors are

e, el e,
1 0 0 1 0 0
(ex: €y, €,) = (ex,ey,€,) | 0 cos —sind | = (ex,ey,e,) | 0 0.91748 —0.39778
0 sinf cosf 0 0.39778 0.91748
(4.43)
1 0 0
(ex, ey, €,) = (€}, €},e,) | 0 091748 0.39778 | . (4.44)

0 —0.39778 0.91748

We put the components of the directional vector in the equatorial coordinates (z,y, z), and
those in the ecliptic coordinates (z/,y', 2). From (4.37),

x 1 0 0 T
y | =1 0 091748 0.39778 y |- (4.45)
Z 0 —0.39778 0.91748 z

This gives conversion from the equatorial coordinates to ecliptic coordinates.

Consider an example shown in p.44. For («,d) = (281.000, —4.070), the directional vector
given by (4.3) is (0.19033, —0.97915, —0.0709752). Using (4.45), the directional vector in the
ecliptic coordinates is (0.19033, —0.92658,0.32437). Similarly to (4.7),

—0.92658
A=tan ' [ ———— ) = —78.3923 = 281.608.
o ( 0.19033 )
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0.32437
vV —0.926582 + 0.190332

S =tan~! ( ) = 18.927.

4.3.8 Conversion from equatorial coordinates to Galactic coordinates

The Galactic center is located at («,d) = (266.40500, —28.93617), so that rotation around
z-axis by ¢ = 266.40500 followed by rotation around y’-axis by 6 = 28.93617 gives the z’-
axis pointing to the Galactic center. Furthermore, we need to specify the inclination of the
Galactic plane, that is ¢ = 58.59866 around the x”-axis (Figure 4.5).

In the following, triple-dash means the base vectors in the Galactic coordinates. Similar
to (4.41),

cos¢p —sing 0 cosf 0 sin6 1 0 0

(e, e;ﬁ’, e)) = (ex,ey,e,) [ sing cos¢p 0 0 1 0 0 costy —sin

0 0 1 —sinf 0 cos#d 0 siny cos®

(4.46)

The inverse conversion is the following;

1 0 0 cos 0 —sinf cos¢ sing 0
(ex,ey,e;) = (e}, ey,e;) | 0 costp sing 0 1 0 —sing cos¢ 0
0 —sinvy cosvy sinf 0 cos6 0 0 1

(4.47)

—0.0548755 —0.873437 —0.483835
= (e, el el) [ 049411  —0.44483  0.746982 | . (4.48)
—0.867666 —0.198076  0.455984

Namely, when the components in the equatorial coordinates are (z,y, z), those in the Galactic
coordinates are (2, y" 2",

" —0.0548755 —0.873437 —0.483835 x
y" | = 0.49411  —0.44483  0.746982 y (4.49)
P —0.867666 —0.198076  0.455984 2

gives conversion from the equatorial coordinates to the Galactic coordinates.

Let’s again consider an example shown in p.44, where («,d) = (281.000, —4.070) and the
direction vector is (0.19033, —0.97915, —0.0709752). Using (4.49), we get components of the
direction vector in the Galactic coordinate (0.879122,0.476581, —0.00355986). Consequently,

0.476581
[ =tan ! | ———— | = 28.463
an <0.879122)
b ! ( —0.00355986 ) 000
V/0.8791222 + 0.4765812 o

4.3.9 Conversion from satellite coordinates to sky coordinates

Similarly, we may convert from satellite coordinates to sky coordinates using Euler angles.
For instance, detectors are fixed on the satellite, and we often need to calculate the sky
location corresponding to an arbitrary position on the detector.
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Equation (4.42) gives conversion between the base vectors in the equatorial coordinates
and those in the satellite coordinates. Let’s put the satellite ZYZ Euler angles (¢, 6, ).
Having components of a direction vector in the satellite coordinates (2", 4", 2"") and those
in the equatorial coordinates (x,y, z), the conversion between the two coordinates is given as

!

x cos ¢ cosf cost)p —singsintyy —sin¢cost) — cos pcosfsiny  cospsin b "
y | = | singcosfcosyy + cospsiny cospcosy —singcosfsiny  sin¢gsinb y”
z —sin 6 cos v sin @ sin 1) cos 6 2"

(4.50)
Let’s consider a practical example. Suzaku CCD camera has 18 x 18 square field of
view, which is aligned to the XY-axes. As shown in Figure 4.3, the CCD square field of
view (FOV) corresponds to a square sky region. The pointing vector corresponds to the FOV
center has the satellite coordinate (0,0,1). For other locations on the CCD, the direction
vector is slightly tilted. We should obtain the satellite coordinate of the direction vector,
then convert to the sky coordinate using the Euler angles.
Let’s take a look at the Suzaku observation carried out on 2006 October 15 to 17
(sequence number is 500009020). From http://darts.isas.jaxa.jp/astro/judo2/meta_
info_page/html/SUZAKU/500009020.html, we see the Euler angles are

¢ = 281.004, 0 = 94.078, ¢ = 184.470. (4.51)

Since Suzaku CCD camera has 18 x 18 FOV along the X and Y-axes, the four corners
have the following satellite XY coordinates;

(0.°15,0.°15), (—0.°15,0.°15), (—0.°15, —0.°15), (0.°15, —0.°15). (4.52)

We see that four directional vectors corresponding to the four CCD corners are the following
(shown in red in Figure 4.3)10;

2.61799 x 1073 2.61799 x 1073 —2.61799 x 1073 —2.61799 x 1073
2.61799 x 1073 |, —2.61799 x 1073 |, | —2.61799 x 102 |, | 2.61799 x 103
0.9999931 0.9999931 0.9999931 0.9999931

(4.53)
Put (4.51) in (4.50), conversion from the satellite coordinates to the equatorial coordinates
is
z —0.0629713 —0.979686 0.190394 x'"
y | = | -—-0.084471 —0.184856 —0.979129 y" ol (4.54)
z 0.994434  —0.0777398 —0.0711144 2"

Putting (4.53), we can obtain the four directional vectors in equatorial coordinates corre-
sponding the four CCD corners;

0.187663 0.192793 0.193123 0.187993
—0.979827 , | —0.978859 |, —-0.978417 |, —0.979385 . (4.55)
—0.0687141 —0.068307 —0.0735139 —0.0739209

To convert to right ascension and declination, we use (4.7). Consequently, we obtain the
coordinate of the for CCD corners,

(o, 8) = (280.842, —3.940), (281.142, —3.917), (281.166, —4.216), (280.866, —4.239).
1ONote that 0.15° = 2.61799 x 10~ rad.

!
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You may confirm using, for instance, JUDO2'!.

4.4 Quaternion, Coordinate Conversion and Satellite Atti-
tudes

4.4.1 FEuler’s rotation theorem

Euler angles are convenient to describe satellite attitudes, since they are intuitive (equations
4.1 and 4.2). However, satellite attitude is not controlled in that manner, sequential rotation
around Z-, Y-, and Z-axis. Instead, satellite attitude can be controlled by a single rotation
around a rotation axis, because of the following Fuler’s rotation theorem.

Theorem I : Any displacement in three dimensional space with a fixed point can be achieved
by a single rotation around an axis through the point.

Assuming that such a rotation axis exists, put the direction vector on the axis (g, yo, 20)-
This vector is invariable with the rotation, so that

o ailr a2 a3 o o
Yo = a1 az2 a23 Yo =A Yo . (4-56)
20 asr asz ass 20 20

Here, A is an orthogonal matrix. Namely, (2o, yo, 20) is an eigen vector of A, and the eigen
value is 1. Using the unit matrix I, the above may be written as

i) 0
A-D)| w |=A 0 |]. (4.57)
20 0

Namely, matrix A — I does not have an inverse matrix, which is equivalent that the determi-
nant is null.

|[A—1]=0 (4.58)
Also, transpose of A is inverse of A;
(A-1)'A=1-"A. (4.59)

Take the determinants of the both sides, using that the determinant of the transpose is the
same as the determinant of the original matrix, determinant of the orthogonal matrix is unity
(4.34), we see

|A—1I|=|I-A4|. (4.60)

Meanwhile, in general for a n x n matrix B,
-B| = (-1)"|B]. (4.61)

Currently, we consider 3x3 matrices, so |I — A| = — |A — I|. Namely, (4.60) indicates (4.58).

"http://darts.isas.jaxa.jp/astro/judo2/?center_lng=281.005&center_lat=-4.0776&zoom=40&
coord=J2000&selectedLayer=SUZAKU_PUBLIC_FOV, Constellation&Base=AL_P_2MASS_color&Top=SUZAKU_
IMAGE&TopAlpha=100&GraphicAlpha=100
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4.4.2 Quaternion

Let’s take a look at inside of “attitude files” of the satellites. The following is a part of the
ASCA attitude file in 1993/09/28 taken from ftp://ftp.darts.isas. jaxa.jp/pub/asca2/
10010120/aux/£a930928_0641.1435.gz;

2.335207979544103E+07 -3.664577454889666E-01
4.253754826778572E-01
5.598341700062809E-01
6.093850355900631E-01
2.335208379541934E+07 -3.664573182646553E-01
4.253649060520620E-01
5.598375141751545E-01
6.093896030552058E-01
2.335208779543787E+07 -3.664571463319929E-01
4.253647582397316E-01
5.598375515033529E-01
6.093897753298769E-01
2.335209179521501E+07 -3.664635097319999E-01
4.253653064430918E-01
5.598271266903228E-01
6.093951430157092E-01
2.335209579523355E+07 -3.664768211073824E-01
4.253597832398843E-01
5.598082237138666E-01
6.094083582093963E-01

The first column is the elapsed time (in second) from the beginning of 1993 (ASCA time).
The second column is the unit quaternion , which describe the satellite attitude at the time.
Make sure the norm of each unit quaternion is unity.

Using quaternion, you can smoothly calculate rotation in three dimensional space. Most
importantly, quaternion gives the rotation axis and the rotation angle directly for a displace-
ment with a fixed point (Theorem I). Also, since quaternion has only four numbers while the
rotation matrix has 9 elements, amount of the calculation is reduced using quaternion. Thus,
quaternion is used in satellite operation, computer graphics and many other fields involving
computation of rotation in 3D space.

4.4.3 Characteristics of quaternion'?.

Quaternion is discovered by Hamiltonian in 19th century. Besides mathematical implication,
practically, unit quaternion describes rotation in 3D space.
Quaternion is defined as follows;

g=ir+jy+kz+w, where i?=j =k?>=ijk=—1. (4.62)

Here, x,y, z, w are real.

'2See ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z



58CHAPTER 4. ASTRONOMICAL OBSERVATION USING ARTIFICIAL SATELLITES

Multiply i from the left of ijk = —1, using i = —1,
jk=1i
Similarly, multiply k from the right, using k? = —1,
ij = k.
Multiply (4.64) from the left of (4.63), using j> = —1,
—ik = ki.
Similarly, multiply k from the right of (4.63),
—j =ik = —ki.
Multiply i from right,
k = —ji.
Finally multiply j to (4.64) from right,
—i =kj.
In summary, the following relationships are obtained:

2= =k =ijk = -1

ij=—ji=k
jk=—kj=i
ki = —ik = j

A quaternion may be expressed as follows;

q= [va] = [(Sﬂ,y, Z),U)} = [CC,y,Z,U)].

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

v is a three dimensional vector. If ¢ = [v,w], ¢’ = [v/,w'], summation of two quaternions to

make a new quaternion is defined as follows;
q+q =[v,w]+ [V, W] =[v+v,w+u].
Multiplication of two quaternion is defined as follows;

qq = [v,w][v/,w'] = (21 + yj + kz + w) (@i + ¥j + 'z + W)

= z2'i? + 2v/ij + z2'ik + zw'i + y2'ji + yy'§? + y2'jk + yu'j
+z2'ki + 2y'Kj + 22'K? + 2w’k + wa'i + wy'j + w2’k + ww'

= —z2' +2y'k — 22§+ 2w'i — y2'k — yy + y2'i + yw'j

+22'j — 2yi — 22 + 20’k + wa'i + wy'j + wi'k + ww'

= (y2' — zy)i+ (22" — 22')j + (zy’ — y2)k

+w(@'i+9j+ k) +w' (@i + yj + 2k) + ww' — x2’ — gy’ — 22

/ / / / /
=[vxVv +wv +uv'v,uw —v-v].

(4.71)

(4.72)

(4.73)
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Here, (4.69) is used.

We should be careful that order of the multiplication of two quaternion cannot be switched
(¢4 # q'q), corresponding to the fact that order of two 3D rotations around different axes
cannot be switched.

On the other hand, if ¢ = [v", w"],

!

(¢9)q" = a(d'qd") (4.77)

holds'3.

Constants and three dimensional vectors can be represented as quaternions. If s is real
constant, its quaternion representation is [0, 0,0, s] = [0, s]OIf v is a three dimensional vector,
its quaternion representation is [v,0]. The following will be trivial:

sq = [0, s][v,w] = [sv, 5] = gs, (4.78)

v = [v,0][v,0] = [v x v/, —v - V']. (4.79)

If s, s’ are constant quaternions, and p, ¢, ¢’ are any quaternions, the following linear relation-
ships hold;

p(sq +s'q") = spq + spq’, (4.80)
(sq+ s'q")p = sqp+ s'q'p. (4.81)
Definition and characteristics of conjugate are the following;
¢ = [v,w]" = [-v,w]. (4.82)
(¢")" =q, (4.83)

(pg)* = {[v,w][v,w']}" = [v x vV + wv' + w'v,uw —v V]

=V xv—wv —wv,uw — vV

= [V, w][-v,w'] = ¢"p, (4.84)
(p+q)*=p"+4q" (4.85)
Definition and characteristic of norm are the following;
N@)=q* =q¢*q=vw?*+v -v=uw?+2>+ ¢+ 22, (4.86)
N(qq') = (¢¢")"(ad") = ¢"¢"ad’ = N(9)¢" ¢ = N(a)N(q"), (4.87)
N(q*) = N(q). (4.88)

In particular, quaternion with norm=1 is called unit quaternion.
Inverse quaternion of ¢ is defined as

¢ ' =q"/N(q). (4.89)
When g is a unit-quaternion,

¢ t=q". (4.90)

13To prove this relation, you need (4.31) on scalar triple product and relations on wvector triple product,
Ax(BxC)=(A-CB-(A-B)C,(AxB)xC=(A-C)B—-(B:-C)A. You may remember this relation
as follow: If you expand the vector triple products, (1) that is a linear combination of two vectors in the
parenthesis, (2) coefficient of each vector is the inner-product of the other two vectors, and (3) sign is plus for
the vector in the middle of the triple products, other wise negative.
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4.4.4 Quaternion and rotation *

The following theorem holds.

Theorem II : Put u as a unit-vector in three dimensional space. Consider a unit quater-
nion, ¢ = [usin{, cos}|, and p = [v,0] where v is an any three dimensional vector. Put
p =qpq~! = [v',0]. Then v’ is the vector when v is rotated by 29 around u.

Uuxv

Figure 4.6: explanation of Theorem II.

Figure 4.6 illustrates the situation geometrically. If v = OP is rotated around u by 2,
v = @ is made. Here, note O@ —ON + NV + m

Also, ON = (u-v)u, NV = cos 20 (v—(u-v)u), and m = sin 2Q u x v. Consequently,

vi=(u-v)u+cos2Q(v—(u-v)u)+sin2Qu x v

=(1—cos2Q) (u-v)u+cos2Q v+sin2Q u x v. (4.91)
On the other hand, multiplication of quaternions can be directly calculated as,
P = qpg~! = [usinQ, cos Q][v, 0][—usin Q, cos ]
= [usinQ, cos Q][—sin Q(v x u) + cos 2 v,sinQ u - v]
= [~ sin® Qux (v xu)+sin Q cos Qux v —sin Q cos Q(vxu)+cos? Qv+sin? Q(u-v)u,0]. (4.92)
Focus on the spacial vector, and use vector triple products, then,
v/ = —sin? Qv 4 sin? Q(u - v)u + 2sin Q cos Qu x v + cos® Qv + sin? Q(u - v)u

= 2sin? Q(u - v)u + (cos? Q — sin? Q)v + 2sinQcos Qu x v

14See, " Classical Mechanics” by H. Goldstein.
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= (1 —cos2Q)(u-v)u+cos2Q v +sin2Q u x v. (4.93)

We see (4.91) and (4.93) free agree. Thus, Theorem II is proven.
Let’s consider two sequential rotations. For p = [v, 0], rotate with ¢, followed by another

rotation ¢’;

/— 1

= (d'Qp(dq) " (4.94)

Here, we used (4.77) and (4.84). Consequently, the following theorem is obtained.

q(qpq " )d' "t =d'apqq'””

Theorem III Following a rotation q, when new rotation ¢’ is executed, the total Totation is
represented with q¢'q.

Remember that successive rotations using Euler angles required complicated matrix cal-
culations (e.g., 4.42). Using quaternions, successive rotation can be simply represented by
multiplication of quaternions.

4.4.5 Quaternion and conversion matrix
Put v = zex + yey + ze,, consider xyz components of (4.91) or (4.93). Here, we assume
q = [usinQ, cos Q] = [q1, 92, ¢3, q4]. (4.95)
Since this is a unit-quaternion,
G+aG+a+aG =1 (4.96)
In the following, we use sin QQu = giex + g€y + g3e,.
v/ = 2(sin Qu) - v sin Qu + (2cos®> Q — 1)v + 2cos Q (sin Qu) x v
= 2(q17 + @2y + 632) (q1€x + geey + g3e,) + (¢ — f — 3 — 43) (vex + yey + zey)

+2q4 { (22 — q3y)ex + (@32 — q12)ey + (1Y — @x)e, }

G-—G-G+aG 200 — 230 20193 + 2q24 x
= (ex, ey, ey) 20192 + 20304 G+ G — G+ 4 24293 — 2q1q4 Y
24193 — 2q2q4 24243 + 2q1q4 —-@G-B+d+4 z
(4.97)
X
= (ex;ey,e) A [ v |. (4.98)
z

Meaning of (4.98) is the following: In the coordinate system whose base-vectors are (ex, ey, €;),

the vector v is represented as the coordinates (x, y, z). If this vector is rotated with the quater-
x

nion (4.95), v’ is obtained, of which coordinates is A [ y |. Note that this is a rotation of
z

a vector in the fixed coordinate system, and not the coordinate conversion.

Next, let’s consider the coordinate conversion, and how a fixed vector is represented in
the coordinate systems before and after the rotation.
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The base vectors (ex, ey, e,) are rotated with the quaternion (4.95), and the new bases

(e, eg,, e,,) are defined. The fixed vector v is represented by (z,y, z) before the rotation, and

by (2',%/,2') after the rotation. The rotation matrix is A~! = ‘4. Consequently,

xT ail ai19 ai3 X X
y’ = a1 Q22 Q23 Yy ="A Yy
Z/ a3y azz2 ass z z
G-B-aG+4 200+ 200 24143 — 29244 x
= 20192 — 24304 —4i+ B - B+ 4G 2293+ 2q1qs y |- (4.99)
20143 + 2q2q4 20243 — 2194 —4} — @+ 43 + 4} z

Remember the Euler’s rotation theorem (Theorem I). If we know the conversion matrix
elements (a11,a19,,,as3), how can we determine the corresponding rotation axis and the
rotation angle? First, using (4.99), derive the quaternion ¢ = [q1, ¢2, g3, q4] from (a1, , ass).
According to the Theorem II, if we put ¢ = [usin {2, cos 2], this gives the rotation around u
by 212.

4.4.6 Application to coordinate conversion

Conversion matrix from equatorial coordinate to Galactic coordinate is given in (4.49). Com-
pare this with (4.99), and we may obtain the corresponding quaternion qi, g2, g3, ga:

g1 = 0.4832, g2 = —0.1963, g3 = —0.6992, g4 = 0.4889, (4.100)

which gives the conversion from the equatorial coordinates to the Galactic coordinates.

Let’ consider an example in p.53, where the directional vector in the equatorial coordinate
(0.19033, —0.97915, —0.0709752) is converted to that in the Galactic coordinate, (0.879122,
0.476581, -0.00355986,0).

Consider the quaternion

p = (0.19033, —0.97915, —0.0709752, 0),
which has the initial vector component. Apply the rotation by ¢ above, then we will get,
¢ pg = (0.879122,0.476581, —0.00355986, 0). (4.101)

We see that this gives the components in the Galactic coordinates.

Also from Theorem II, if we put ¢ = [usin {2, cos (], this indicates rotation around u =
(0.5539, —0.2250, —0.8016) by 20 = 2 x 60.°73. In section 4.3.8, three Euler rotations were
required from equatorial coordinate to Galactic coordinates. This is equivalent to the single
rotation around u by 29).

4.4.7 Application to satellite attitudes

Using quaternion, we may manipulate satellite attitudes in a straightforward manner. For
example, we may know how to maneuver from one attitude to another attitude, calculate
average of satellite attitudes or interpolate attitudes.
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O

Figure 4.7:

Let’s put the initial attitude O (satellite Z-axis is toward north pole, X-axis is toward
the sprint equinox), apply the rotation p to achieve the new attitude P, followed by the
application of ¢ to achieve (). What will be the most effective maneuver from P to Q7 To
change attitude from P to @, this is represented with the quaternion gp~' (Figure 4.7).
Given the quaternion gp~!, represent it with [usin 2, cos 2], which tells the rotation axis
u and the rotation angle 2€2. The average of the two attitude P and @ is simply given when
the rotation angle is half (€2).

We may interpolate the attitude between P and ). For example, if the attitude P is at
the time tg, and attitude @ is at t;, then any attitude at ¢ between ty and ¢; is given by
[usin Q(t), cos Q(t)], where

Q) = 10

- , 4.102
P— (4.102)

4.5 Satellite Orbits

4.5.1 Two body problem and Kepler’s law

Motion of artificial satellites around the earth, as well as that of planets around Sun, can be
solved as two body problem in classical mechanics. Then naturally, we may derive Kepler’s
three laws. Let’s take a look.

Assume mass of the earth (or Sun) M (position vector r1), that of satellite (or planet)
m(position vector r3). We consider only gravity between them (gravitational constant G),
and do not consider other bodies or forces (thus, two body problem). The force between the
two body may be written as F', then the equation of motions are

d2’l°1
—5 =F (4.103)
2

ir2 __p (4.104)
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From these equations,
d?(Mry + mmrs)

= 4.1
2 0 (4.105)
mM  d*(ry — 1)
=—F. 4.106
m+ M dt? ( )

(4.105) indicates that the center of gravity, (Mry + mry)/(M + m), moves at a constant
velocity move (or does not move). Equation (4.106) describes the motion of a planet that
has a reduced mass p = mM/(m + M).

Position vector of the center mass is

Mri +mro ! +m/MT'2
M+m — 1+m/M "’

which is &~ 71, if m/M ~ 0. Also,

- omM m
Cm+M  14+m/M’

1

which agrees with m when m/M =~ 0. Namely, when m < M, which always the case, the
center of gravity is close to r; and the reduce almost agrees with m.
Below, m is considered to be the reduced mass, and consider the position vector of the
satellite relative to the earth, ro — ry = r.
Consider the polar coordinates, where e, and ey are base vectors. Velocity vector of the
satellite is
dr/dt = d(re,)/dt = re, + r€, = re, + roey.

Put angular momentum of the satellite h, which is written as h = mr26. The area which
is made by the position vector r per unit-time is called area velocity. The area velocity may
be written as h/2m. The acceleration vector is written as

Pr/dt* = (7 — r6?) e, + (20 + 1) ey.

Consequently, we may write the equation of motion in the radial direction and azimuthal
direction as,

m(i — r62) = —G]\gm (4.107)
T
m(2r0 + ) = 0. (4.108)
From (4.108),
) so1d, s
2 S = 0. 4.1
70 4 10 rdt(r 0)=0 (4.109)

Since mr20 is the angular momentum h, we can see that the angular momentum is constant.
Since area velocity is h/2m, we see that area velocity is constant (Kepler’s second law).

Using that h is constant, we may integrate (4.107) with r, and obtain the energy conser-
vation equation which is

—E. (4.110)

2

dt

m [dr\? h? GMm
2mr? r

Here, we put the total energy E.
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Below, we will derive Kepler’s fist law, namely, orbit of the satellite is an ellipse where
the earth locates at one of the two foci.
In (4.110), we change the derivative by time to derivative by angle 6,

m( h ﬂ)z h? _ GMm
2 “mr2df 2mr? r

—E. (4.111)

This derivative equation give the relation between r and 6. If r is represented as a function
of 0, this gives an orbit of the satellite.
We switch the variable as 1/r = w, then obtain a derivative equation of u and 6:

d
+ —— — = db. (4.112)
\/27}:12]5 e ]\}/L[4m —(u— G%m )2
We can directly integrate, then
U — GM2m2
+cos™! A =4. (4.113)

2mE G2M?2m4
N

Here, we choose origin of the angle appropriately so that the integration constant is null. We
may solve with r, such that

h2
r= GMm? (4.114)

1+4/1+ Gfﬁgiﬁ cos

Meanwhile, an ellipse can be expressed in the following;

l

= < .
=g 0Se<), (4.115)

where r is distance from the focus, 6 is angle from a line through the focus. Here e is
eccentricity, and [ is called semi-latus rectum (Figure 4.5.1). When e = 0, the ellipse will be
a circle. As e is close to 1, the ellipse is more elongated.

If we put
h2
'= G2 (4.116)
2Fh?
=V Gz (4.117)

(4.114) and (4.115) agree.

Next, we will derive Kepler’s third law, that square of the orbital period is proportional
to third power of the semi-major axis.

To prepare, let’s review general characteristics of ellipse. Consider an ellipse with the
same-major axis a and semi-minor axis b. This ellipse is expressed as (4.115). Also, “sum of
the distances from the two foci F' and F” is constant on any points on ellipse”, which is another
definition of ellipse. If we consider points A or C', we can readily see the sum of the distances
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Q

¢
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Figure 4.8: Satellite orbit (ellipse) and explanation of the nomenclatures used in the text.

from F and F’ is 2a. Meanwhile, using (4.115), FA=1/(1+e¢) and FFA=FC =1/(1 —e).
From these relations, we get

l l

20 =FA+F'A= 4.11
a + Tre + i—c (4.118)
-t (4.119)
Cl—e? )
Also, we see,
l
OF =0A—-FA=a-— =a—a(l —e)=ae. (4.120)
1+e
At B,
BF + BF' =2a =2\/OB? + OF? = 2\/8? + (ae)?. (4.121)
Using (4.119) to eliminate e, we finally get
b= Val. (4.122)

The area of ellipse is given as mab. Having the area velocity 1T, we see that the area
velocity is

mab
2m = —-. 4.12
njom =" (4123)
Using (4.122) and that [ is represented as (4.116),
21a3/?
T = . 4.124
Ve (124

This is Kepler’s third law.
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LEEAER(TD2)

Figure 4.9: Explanation of the orbital six elements. Taken from “0 00000000000
000 0”(ISBN:4563067563)

4.5.2 Orbital six elements

Satellite orbit and its location is fully described with the following orbital siz elements

e a: Semi-major axis. When circular orbit, this will be the radius.

e e: Fccentricity. When circular orbit, e = 0.

i: Inclination). Angle between the equatorial plane and the satellite orbital plane.

Q: Right ascension of the ascending node. When ¢ # 0, right ascension of the point
where the equatorial plane and the satellite orbital plane crosses (ascending node).

e w: Argument of perigee. When elliptical orbit, angle of the perigee from the ascending
nodel]

Orbit is determined from these five elements.

e M: Mean anomaly. Location of the satellite at a given time (epoch).

Figure 4.10 indicates time history of the orbital six-elements of the Ginga satellite, which
was launched on 1987 February 5, and reentered on 1991 November 1.

We see the orbit is close to a circle, since e ~ 0. Since radius of the earth is about 6378
km, we see the altitude of the satellite at the launch is about 550 km. Inclination angle
i corresponds to the latitude of the launch site, Uchinoura Space Station; the satellite was
launched toward east to utilize the spin-velocity of the earth. Consequently, latitude of the
launch station will be the inclination angle.

'5See nttp://spaceflight.nasa.gov/realdata/elements/.
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We see that ) varied periodically, which indicates precession of the orbital plane, due to
the non-spherical gravitational field of the earth.
Near the end of the mission, we see a drops rapidly, due to atmospheric friction. As a
decreases, e decreases too (becomes closer to circle).
From Kepler’s third law,
2ma’/?

T= ;
VGM

orbital period and a are related. Using the Schwarzschild radius of the earth, 2G Mg, /c? = 8.87
mm, we obtain

(4.125)

_ 2v27ra3/2 /e 24/2m(a/6900 km)3/2(6900 km)3/2 /(300000 km/s)

- \V/2GM/c? V/8.87 mm
= 95 min(a/6900 km)3/2. (4.126)

Figure 4.11 shows the time history of the orbital period and a for the Ginga satellite. For
low earth orbit (LEO) satellites like Ginga, orbital period is about 96 minutes.

4.5.3 Geosynchronous satellites

Spin period of the earth is 23 hour 56 minutes and 4.09 seconds '6. From (4.126), we see
that at a = 42200 km (altitude is about 35800 km), the orbital period of a satellite agrees
with the spin period of the earth. If satellites are at this radius and the inclination is zero
(on the equatorial plane), they look static from the earth surface. These satellites are called
geosynchronous satellites. Weather satellites, communication satellites etc, which are required
to be seen from particular location on the earth surface, are put in the geosynchronous orbits.

4.5.4 Two Line Elements

In order to represent orbital six-elements, Two Line Elements (TLE) are often used, which is a
standard format of not only the six elements but also satellite name, international indentation
number etc.

NORAD (NORth American aerospace Defense Command; http://www.norad.mil) is
monitoring almost all the satellites (and whatever orbiting the earth), and release their orbital
elements in the TLE format (Figure 4.12).

Be careful that ”Mean Motion”, which is the number of rotations per day, is used instead
of a. Let’s take a look at TLE of several satellites!":

SUZAKU

1 28773U 05025A  08013.93865221 .00000558 00000-0 37528-4 0 6575
2 28773 31.4061 323.8498 0007001 164.9250 195.1602 15.00529329137995
ASTRO-F (AKARI)

1 28939U 06005A  08014.23580039 .00000005 00000-0 11192-4 0 6030
2 28939 98.2316 16.5778 0008622 0.3484 359.7729 14.57435459100351
HINODE (SOLAR-B)

1 29479U 06041A  08013.94377495 .00000087 00000-0 26130-4 0 4426

Not 24 hours, which is a day, period of the apparent solar motion seen from the earth.
"L atest TLE may be obtained from http://celestrak.com.
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2 29479 98.0789 23.2007 0014564 229.4553 130.5382 14.62802560 69920
INTEGRAL

1 27540U 02048A  08012.45833333 .00000061 00000-0 10000-3 O 6500
2 27540 86.3672 23.5282 7969010 276.7243 358.3858 0.33418208 2558
HIMAWARI 6

1 28622U 05006A  08014.77456198 -.00000264 00000-0 10000-3 O 4588
2 28622 0.0211 76.8046 0002163 49.6656 46.0362 1.00271868 10549

We can readily see the following:

1. Suzaku, Akari, Hinode are LOE satellites, which orbits about 15 times a day. Himawari
orbits once a day, since it is a geosynchronous satellite.

2. INTEGRAL, European gamma-ray satellite, has a large, eccentric orbit, where the
orbital period is about three days. Other satellites have almost circular orbits.

3. Suzaku orbital inclination angle is 31.4 deg, corresponding to the latitude of the launch
site, similar to Ginga. Inclination of Himawari is 0, since it is a geosynchronous satellite.
Inclinations of Akari and Hinode are almost 90 degree, as they have the Sun-synchronous
orbit (SSO). Their orbital planes are always facing Sun, so that Hinode, solar observing
satellite, can always observe Sun, and Akari, infrared satellite, can always observe the
anti-direction of the earth!®.

1¥Farth is a strong source of the infrared noise.
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Ginga orbital six parameters
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Figure 4.10: Variation of the orbital six-elements of Ginga satellite from the launch
(1987/02/05) to the reentry (1991/11/01).
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Figure 4.11: Variation of the semi-major axis and the orbital period of the Ginga satellite
from the launch to the reentry
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Chapter 5

X-ray Production Mechanisms

5.1 Optical Depth

When radiation go through material with the optical depth 7, the flux will be weakened by
e~ 7. Thickness of the material being L [cm], hydrogen column density Ny [cm™?2], density p
[g/cm?], then

7 = ajem '] L[em] = x[em?/g] plg/cm?] Llcm] = Ny[em™?] og[cm?], (5.1)

where « is called absorption coefficient, Kk mass absorption coefficient; opacity, og is the
cross section per hydrogen atom. In general these parameters are functions of location and
wavelength (photon energy).

Consider each photon; the probability that a single photon moves forward by T without
being absorbed is e~". Also, average optical depth of the photons is unity. In fact,

(o]
/ e Tdr =1,
0

(1) E/ Te Tdr =1.
0

When 7 > 1, the material is optically thick and the photons are absorbed in the material.
When 7 < 1, the materiel is optically thin, and the probability that a photon is absorbed in
the material is 1 —e™™ ~ 70

Average of the physical paths of photons, I, will be, from 7 = al =1,

1
l=— 5.2
5 (5.2)
which is called mean free pathO From (5.1) and (5.2),
L

5.2 Radiative Transfer

Using the emissivity j, [erg/s/cm3/Hz/str]0 and the absorption coefficient o, [em™!], the
source function S, [erg/s/cm?/Hz/str] is defined as,

S, =~ (5.4)

Qy

73
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You should remember the radiation transfer equation and the unite of I, and S,,, erg/s/cm?/Hz /str.
Equation of the radiative transfer is written as ,

dl,

Y= I,+85,. .
i +8 (5.5)

In general, I, (specific intensity; brightness), S, (source function) is a function of frequency,
location and optical thickness 7, that can be also a function of the frequency and location.
If we considering scattering of photons, S will be dependent on I, and the radiation transfer
equation will be more complicated (we do not consider the scattering here).

In the case of local thermal equilibrium (LTE), the source function is determined only by
temperature, and given as the Planck function B,(T")

2 hv3

B,(T) = 2 hv /KT _

[ergs/s/cm? /Hz/str]. (5.6)
You should remember the functional form of the Planck function B, (T).

Equation (5.5) can be intuitively understood as follows:
When I > S, since dI/dt < 0, I decreases. When I < S, since dI/dt > 0, I increases.
Namely, I is going to approach S, along 7. When 7 is large enough (optically thick case), I
will be S.

When S, = B,, it is called thermal emission. When I,, = B,, it is blackbody emission.
Any thermal emission will become blackbody emission in the optically thick limit.

In thermal emission, S, = B, (T'), and

(5.7)

holds. This is called the Kirchhoff’s law.
In the simplest case when S, is constant not depending on 7, (5.5) may be solved as,

IL(r)=S,1—e™)+1,(0)e ™. (5.8)

Here, considering a matter (plasma) with the optical thickness 7, the input radiation is
I,,(0), and the output radiation is I,(7). From (5.8), when 7 > 1 (optically thick), as we
have already seen,

L(r)=25,. (5.9)

In particular, in the case of thermal emission (I,(7) = B,(T)), whatever the composition of
material (plasma), that will be the blackbody emission.
In the optically thin case (7 < 1, (5.8) will be

L(1)= S, 7+ L,(0)(1—m). (5.10)

When there is no input radiation, the second term is zero, and optically thin emission pro-
portional to the optical depth is observed from the first term.

In particular, if 7, > 1 at a particular frequency, an absorption line is observed at that
frequency.

From (5.9) and (5.10), as long as thermal emission, S, = B,(T), is concerned, always
I,(1) < B,.. Namely, strength of the thermal emission never exceeds that of the blackbody
emission.
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-
Figure 5.1: A simple configuration of radiation transfer.

5.3 Blackbody Radiation

5.3.1 Blackbody radiation and Einstein’s A and B coefficients

Blackbody emission does not depend on composition of plasmas. Let’s consider a simple
case that two-level atoms (where the energy gap is hv) are in equilibrium in the blackbody
radiation field with temperature T'. If the number density of the upper-level atom is ns and
that of the lower-level atom is nq, since the atoms are in thermal equilibrium,

"2 _ exp(—hv/kT). (5.11)
ni
Atoms in the upper-level will have spontaneously emission to emit photons with the
frequency v and transit to the lower level at the rate of Ag[s™!]. In the radiation field J,,
photons are absorbed by the lower-level atoms BisJ, per second. Also, we need to consider
the induced emission, at the rate of BoiJ,. Here, As1, A1o, B1g are called Einstein’s A and B
coefficients. Considering the detailed balance, we have

n1Bi2J, = noAa +neBaiJy,. (5.12)

This can be solved for J,, as

As1/Ba

= (n1/n2)(Bi2/Bax) — 1

(5.13)

Using (5.11),

As1 /B
J, = 21/ By . (5.14)
exp(hl//kT)(Blg/Bgl) -1
Now, in general Einstein’s relationship holds,
B2 = Bax,
2hv3
A21 = Bgl. (515)

c2
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Using (5.15), 5.14) is rewritten as

2h13 ) c?

v = oxplhw kD) =1 78/ em® /Ha stz (5.16)

Now we obtained the Planck function, B, (T').

5.3.2 Characteristics of blackbody radiation
Frequency and wave-length to give the blackbody peak

Consider the blackbody radiation (5.6) or (5.16), which is given as a function of frequency.
We may obtain the blackbody radiation as a function of wave-length, considering

B,(T) dv = —B\(T) dX.
Since ¢ = Avl dv/v = — d\/ A,

B 2hc? /N5
~ exp(he/MET) — 1

B\(T lerg/s/cm? /A /str]. (5.17)
Calculate derivative of (5.6) with v, then we see the Planck function will be maximum at

the peak frequency vpaz;
hVmae = 2.82 KT (5.18)

It is useful to remember that the peak frequency of the blackbody energy spectrum is around
three times the temperature.

On the other hand, calculate derivative of (5.17) with A, then we see the wavelength
AmazWhich gives the maximum blackbody flux is

hc
Amaz = 0.201 T (5.19)

Note that Az Vmaz = 0.57¢ # ¢ Namely, the peak frequency which gives the mazimum
blackbody flux per-frequency and the peak wave-length which give the mazxim flux per wave-
length are different..

Approximation in the low/high-frequency limits

When hv < kT, from (5.6),
202 kT
5

B,(T) ~ (5.20)

c
This is the Rayleigh-Jeans law
Note that h does not appear, and the intensity is proportional to 7. Multiply 47 /¢, then
the energy density is (8722/c3)kT. Remember that the classical electromagnetic natural
vibration density is 8712 /c3. For each natural frequency, the thermal energy kT is associated.
When hv > kT,

2h13
B,(T) ~ Tje*’”/’w, (5.21)

which is Wien’s law.
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In radio astronomy, most emission is in the Rayleigh-Jeans regime, while in X-ray as-
tronomy, where typical energy range is 2-10 keV, most emission is in the Wien’s law side,
since typical accretion disk temperature around stellar-mass black hole is ~ 1 keV and the
X-ray burst of neutron stars have ~ 2 keV. We rarely see blackbody emission with higher
temperatures.

5.3.3 Energy density and flux of blackbody emission

Energy density is given as
4 [
u=— B,(T)dv
¢ Jo

8rk* oo g3
= T d
h3c3 /0 s

where the integral is 7{—;, SO
u=a T4,
8mok4
4= —s
15h3¢3
=1.37 x 10" [erg em ™3 keV ™).

=756 x 1071 [erg cm ™3 deg™].

As an example, temperature of the Cosmic Microwave Background Radiation (CMBR)
is 2.725 K, then the energy density is 4.17 x 10~ 3erg/cm?® ~ 0.26 eV /cm?.
Flux from the surface of the body emitting blackbody emission is given as

FE/ICOSHdQ

w/2 oo
= 27r/ {/ B,,(T)du} cos 0'sin 6 df
0 0

[e.@]
- w/ By (T)dv = S u =214 =0T, (5.22)

) 17
B 2ok
77 e
=1.0 x 10** [erg cm 2 keV 4 571,

=5.67x 1075 [erg em™2 deg™* 57!

where o is the Stephan-Boltzmann constant (see also section 2.1.1).

5.3.4 Photon number density of blackbody emission

Let n be the photon number density of the blackbody emission;

4 o
n = 77/ B,(T)/hv dv
¢ Jo

_ 8wKPT? [ a? J
oS Jy er—1 o
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Since fooo efildx = 2.404,

3
n = 60.4 (’f) =C1T3,

c
C = 20.3 [photons cm ™ deg™?]

= 3.17 x 10%2 [photons cm ™3 keV 3.

For instance, in the case of CMBR (T=2.725 K), the photon density is ~ 410 photons/cm3.
Also, using (5.19),

1/n~2X3

max-*

1/n is the volume per photon, so, schematically, the space is filled with the photons having
the wave-length \,qz.

5.3.5 Three temperatures

Blackbody emission has the unique temperature, such that 1" = Torp = Tp,. = 1,44, where
Tepp, Ty and Tipq are effective temperature, brightness temperature and color temperature,
respectively, which are explained soon below. If emission is (slightly) different from the
blackbody, we need to distinguish these three temperatures.

Effective temperature)

Let F be the flux from surface of the emitting body. Then the effective temperature T, is
defined as

0T64f f=F

For instance, luminosity of the spherically emitting star with the radius R is given as L =
ATR’F = 4%R20T3f f- Put the distance to the star d, and the observed flux f, then f =

L/4rd?, and
d 2
4

Namely, if d/R is known, effective temperature is derived from the observe flux; otherwise
we may not know the effective temperature from observation.

Color temperature

Observed spectral “shape” is fitted with the Planck function, and the best-fit temperature
is the color temperature, T,,;, which does not dependent on distance to the source or area of
the emission region.

What we may obtain from X-ray spectral fitting of the observed data is the color tem-
perature, which is, in general, different from the effective temperature (see section 5.3.6).
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Figure 5.2: Model spectrum from bursting neutron star (solid line) numerically calculated
taking account of inverse-Compton scattering in the upper-atmosphere. In the 2-20 keV
energy range, this is approximated well with the “diluted blackbody”, (T¢s¢ [Teo)) By (Teot)
(dash-dotted line). The Planck function B(T.¢) is shown with the dashed line. Taken from
Ebisuzaki 1987, PASJ, 39, 287.

Brightness temperature

At a given frequency v, measure the specific intensity I,,. The brightness temperature Ty is
given by
I, = B, (Tp).

Brightness temperature is often used in radio astronomy where Rayleigh-Jeans approximation
holds.

When medium (plasma) with temperature 7" is emitting thermal emission (say, thermal
bremsstrahlung; section 5.4.1), since it is less efficient than blackbody emission (section 5.5),
T > Tp. On the other hand, in the case of non-thermal emission (say, synchrotron emission;

section 5.5) T' < T}, is common!.

5.3.6 Correction for the difference between the color temperature and the
effective temperature

In hot atmospheres such as accretion disk or neutron star surface, hot electrons near the sur-
face inverse-Compton scatter the blackbody photons from inside. Consequently, the photons
gain energies, and the blackbody spectra are distorted while preserving the total number of
photons, such that lower energy photons appear in higher energies. The spectral peak shifts
upward so that the color temperature will be higher than the effective temperature (Figure
5.2).

It is necessary to numerically solve radiation-transfer equations to obtain precise spectra
when inverse-Compton scattering presents. Luckily, in the typical X-ray band (~2-10 keV)
the output spectrum affected by the inverse-Compton scattering s approximated with the

'For instance, Ty ~ 10'® K is observed from the archetypal quasar 3C273. See http://arxiv.org/abs/
1601.05806.
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“diluted blackbody”,

T 4
I, = (Tff> By(Tool), (5.23)
col

where the color temperature T, is higher than the effective temperature T,¢s. As in (5.22),
we can obtain the flux from the unit surface,

oo/ 4
F:/ / (”) By(T,o) dv % cosdQ
0 Tcol
( eff) / B,(T.o) dv = <ff> 0T, = oT, ;. (5.24)
col col

So, definition of the effective temperature holds.

Let’s consider the optically thick accretion disk around a stellar black hole (section 3.5.3).
There, we assumed that the disk emits the blackbody emission, and derived the equation
(3.15),

Laisk = 4mor Tph. (5.25)
Here, T;,, innermost disk temperature, should be the effective temperature, which we
write as T(ef 7 However, what we can obtain from spectral shape (spectral model fitting) is

)

the color temperature of the disk, which we may write as Ti(;Ol .

Consequently,
(efH\* l l
Lassk = 4mor?, (T D) = dmor?, | S | (1) = dmo (7, 2T, (5.26)
T,
where
T(col) 2
Tin = Ty (eff) >, (5.27)

Namely, the true innermost radius r;, is ( (col) / T, (cf1) ) times greater than the apparent

innermost radius r}, derived from the color temperature T(wl).

The value of T,y /Tess, often called hardening factor should be numerically calculated.
Luckily again, this value is rather constant at about ~ 1.7 over different radii and disk
luminosities in the case of stellar-mass black holes O Shimura and Takahara 1995, ApJ, 445,
780).

The black hole mass is estimated by identifying 74, as Rrsco that is 6GM/c? in the
case of Schwarzschild (non-rotating) black hole (section 2.3.3). Remember that what we can
obtain from model fitting of the accretion disk spectra is Ti(rf()l). If Toor/Teps ~ 1.7 the actual
black hole mass becomes 1.72 ~ 3 times greater than the mass estimated (wrongly) assuming

the blackbody emission with the temperature T(COZ)
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5.4 Thermal Emission

5.4.1 Thermal bremsstrahlung

When free electrons are affected by Coulomb force of nuclei (mostly protons in astrophysical
plasma), the electrical dipole will go through accelerated motion, and produce in electromag-
netic radiation. This is called bremsstrahlung.

Optically think hot plasmas emit the radiation by thermal bremsstrahlung. From hot
plasmas, not only the continuum emission due to thermal bremsstrahlung, but also many
emission lines are emitted due to recombination of ions and electrons (Figure 5.5).

As explained in section 5.2, any optically thick thermal emission will become the blackbody
emission, that is most efficient. Neutron star atmosphere, and the standard accretion disk
(around black hole or neutron star) are optically thick, and emit blackbody emission?.

On the other hand, thermal bremsstrahlung is observed from optically thin plasmas, such
as Cataclysmic Variable (white dwarf binary), super-nova remnants (SNRs), galaxies, clusters
of galaxies, etc.

Since blackbody is the most efficient, very compact objects such as neutron star s of black
holes, emitting blackbody emission, are bright X-ray sources. On the other hand, X-ray
sources shinning with thermal bremsstrahlung are geometrically much bigger, otherwise they
may not be observable.

Approximated formula of X-ray energy spectrum

Energy spectrum of thermal bremsstrahlung is given as (see Appendix),

ff— aw 257T66 < 27

1/2
_ T-12720 nie"/%T g, (T
dVdtdv — 3mc? 3km> fetti 975(T,v)

= 6.8 x 10738771222, ne /¥ G, (T, ) [CGS unit). (5.28)

In X-ray observation, often kT' ~ hv, in which case gy ¢(T', v) is approximated as ~ (hv/ kT)=94,
Consequently, X-ray energy spectrum of thermal bremsstrahlung may be approximated with

fe(B) o E=% exp(—E/kT) [erg/s/cm? /keV]. (5.29)
Consequently, the photon spectrum is approximated as (Figure 5.3),

fo(E) o< E-'* exp(—E/kT) [photon/s/cm?/keV]. (5.30)

Emissivity

If (A.23) is integrated by frequency, we may obtain emissivity of the thermal bremsstrahlung
emission with temperature T per unit-time per unit-volume;

k
/ elldv =6.8 x 10*38T1/222nenigff(T)E [CGS unit]
= 1.4 x 107 TY2Z%n,n;5;¢(T) [CGS unit].

2 Affected by inverse-Compton scattering (section 5.3.5).
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Figure 5.3: Comparison of kT'=7 keV thermal bremsstrahlung spectra (black, brems model
in xspec) and a cut-off power-law model x E~Pexp(—FE/kT) where kT=7 keV (red).
From top to bottom, unit of the Y-axis is [photon/s/keV/cm?], [keV/s/keV/cm?] and
[keV?/s/keV /cm?], and the p value is 1.4, 0.4, —0.6, respectively.
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Here, a frequency averaged Gaunt factor is g;¢(7T") ~ 1.2, and assuming the cosmic abundance,
S nenzZ? ~ 1.4n2.3 In the end, we can obtain the emissivity in [erg/s/cm?] of thermal
bremsstrahlung emission with 7" and ne;

/ effdv = 2.4 x 1072722 [CGS unit]. (5.31)

Characteristics of thermal bremsstrahlung

e Broad energy spectra

Let’s compare a wide-band energy spectrum of thermal bremsstrahlung with that of the
blackbody having the same temperature [0 Figure 5.40 . We can see that the thermal
bremsstrahlung is much “wider”, in particular it extends toward lower energies. This
is because those electron only slightly “curved” by the ions emit soft X-ray photons.

e Inefficiency compared to blackbody

As we have already seen in 5.2, intensity of thermal emission never exceeds the black-
body emission. In very early era of X-ray astronomy, bright sources like Sco X-1 was
suggested to be white dwarfs emitting thermal bremsstrahlung emission. In order to
explain the observed luminosity ~ 1038 erg/s with thermal bremsstrahlung, using (5.31)
with the temperature estimated from observation, T = 2 x 107 K (~ 2 keV), an emis-
sion measure as large as n2V a 10%1 [em~?] is required. For dense plasma, the density
is at most ~ 10" cm™3, so V ~ 103! cm?, or size of the emission region is R ~ 10'°
cm. This is much larger than the typical neutron star radius, ~ 10° cm, 10° ¢cm, and
even rather than white dwarfs (R < 10%cm). Namely, so that such compact objects
as neutron stars emit brightly, thermal bremsstrahlung is too inefficient, and optically
thick emission (=black body) is required 2.

Cataclysmic Variables, binaries of white-dwarf and late-type companion, are known to
emit high-temperature (k7" ~ 10 keV) thermal bremsstrahlung spectra. In this case, not
the entire white dwarf surface, but only bottom part of the accretion column becomes
optically thin and emit via thermal bremsstrahlung. If we put R ~ 10® cm?, n, ~ 101
em ™ and T ~ 10® K, the luminosity will be ~ 103! erg/s from (5.31). We see that
neutron star emitting with black body is ~7 orders of magnitude brighter than white
dwarfs, that is more than two orders of magnitude larger and an order of magnitude
hotter than neutron stars.

e Line emission

From hot plasmas, as long as they are not fully ionized, not only the thermal bremsstrahlung
continuum, but also emission lines are observed from recombination (Figures 5.5 and
5.6). It is not easy to calculate line-dominated energy spectra from such hot plasmas,
but theoretical plasma models are implemented in standard packages like XSPEC, and
easily available.

3See, Zombeck, “Handbook of Space and Astrophysics”.
40r, non-thermal process like synchrotron emission is required.
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Figure 5.4: Blackbody spectrum with k7" = 1 keV (top) and thermal bremsstrahlung spec-
trum with the same temperature (bottom) in the unite of keV?/s/cm?/keV. Both have peaks
at around 3 kT (section 5.3.2). We can see thermal bremsstrahlung is much wide and par-
ticularly extends toward lower energies. )
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Figure 5.5: Theoretical energy spectra from thermal plasmas at 1 keV, 5 keV and 20 keV.
The “mekal” model in XSPEC is used. We can see that, as the temperature increases, (1) the
continuum peaks shift toward higher energies, and (2) emission lines from heavier elements

are more prominent.
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Figure 5.6: Expansion of the iron K-line region in the previous figure. Iron line missions from
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plasma temperature increases, lines from more highly ionized ions are observed.
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5.4.2 Thermal inverse Comptonization

In thermal (and non-thermal) Comptonization, photons are not created, but already existent
photons are scattered by electrons in the plasmas. In Comptonization, number of photons
are preserved. Let’s review related terminologies:

Thomson scattering

Scattering of long-wavelength electromagnetic waves (= low energy photons) by free elec-
trons. This is the long-wavelength (=low energy) limit of the Compton scattering. Thomson
scattering is described by classical electromagnetic theory, such that electrons oscillate ac-
cording to the input electromagnetic wave, and emit the electromagnetic wave with the
same-frequency; namely, photons do not change energies due to Thomson scattering. Cross-
section of Thomson scattering is o7 = %“7"8, where r( is the classical electron radius (section

2.2.1).

Compton scattering (=Comptonization)

Scattering of high energy photons by electrons. When mono-energetic X-ray photons are
scattered by electrons, low energy (longer wavelength) X-ray photons are observed by A\ =
Ac(1 — cos ), where 6 is the scattering angle, and Ac = h/mec ~ 0.02426 A is the Compton
wavelength of electron (section 2.2.1). Compton scattering is considered as elastic collision
between photons and electrons.

Cross-section of Compton scattering is given as Klein-Nishina cross-section, of which the
low-energy (long-wave) limit is Thomson cross-section.

Inverse Compton scattering

In Compton scattering, high-energy photons lose energy through elastic-scattering with low
energy electrons. In inverse-Compton scattering, low-energy photons gain energies through
elastic-scattering with high-energy electrons. These two phenomena are identical if observed
at the electron rest-frame. Therefore, often Compton scattering and inverse-Compton scat-
tering are not distinguished, but may be just called Compton scattering or Comptonization.

In X-ray astronomy, we often observe inverse-Compton scattering of soft photons by high
energy electrons.

Energy spectra of Thermal inverse Comptonization

Thermal electrons in hot-plasma (= kT¢) inverse-Compton scatter input low energy photons
(= Egp < ETe), so that photons gain energies. In the energy range Ey o5 < E < kT,
power-law spectra are observed due to superposition of multiple scattered photon spectra
(Figure 5.7). In E 2 kT, the spectrum falls exponentially.

The Compton y-parameter is defined as follows;

4kTe
y =

— 5 Max(7seo, 72.), (5.32)

where 74 is the scattering optical depth of the plasma. Here, maz s, 72,) is the number of
scattering in the medium, and 4kT, /mc? is the energy each photon gains per scattering. The
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power-law spectrum becomes flatter as y increases. When 7, > 1, inverse-Compton effect
is saturated, and Wien peak appears at around F ~ 3 kT, (Figure 5.8, left).

Thermal Comptonization explain energy spectra of low-state of Galactic black hole bina-
ries (Figure 5.8, right), where hot, thermal plasma is believed to exist around black hole, while
optically thick standard accretion disk terminates far from the black hole (R;, > Rrsco)’.

5.5 Non-thermal Emission

5.5.1 Radiation by relativistic electrons

Consider the case that electrons are accelerated up to much higher energies than the rest
mass energy (511 keV), where electrons are called relativistic ¢ . Energy of an electron with
velocity v is E = mc?y, where v = 1/4/1 — (v/c)2.

Often we consider the case that electron energy distribution, N(FE), is expressed with a

power-law function such that
N(E)dE x~v7P dr. (5.33)

For example, Fermi acceleration of elections is known to produce such power-law electron
distribution.

If relativistic electrons are in the magnetic fields, they emit photons with the synchrotron
radiation (section 5.5.2). If there are input soft-photons, they are Comptonized by the rel-
ativistic electrons, and the relativistic inverse-Compton emission is produced (section ?77).
Both processes can take place at the same time. In particular, synchrotron photons may be
comptonized by the very electrons to have created these photons, which is called synchrotron
self-compton (SSC) mechanism”.

In both synchrotron emission and non-thermal inverse-Comptonized emission from an
electron with the energy E = mc?y, the following conditions are satisfied;

1. Typical emitted photon energy (= hv,) is proportional to 72 (see equations 5.37 and
5.41).

2. Luminosity that photons with frequency v is emitted from a single electron is repre-
sented with S(v/v.).

In this case, if electron distribution is represented with (5.33) in a wide-energy range, the
energy spectrum (in [erg/s/cm?/Hz]) is written as

F(v) « /S(l//l/c)’yp d.
Let’s change the variable from « to v, using v, o 72, so that

dy  dv. ( 1 >
— xrved|— ).
i Ve Ve

5In the “high-state” of black hole binaries, it is believed R;» = Rrsco (section 2.3.3 and 3.5.3)

5Such efficient acceleration takes place in, e.g., pulsars, supernova remnants, AGNs (blazers) in the universe.
On the earth, in synchrotron radiation facilities, electrons are accelerated to radiate strong synchrotron lights
which have many practical purposes. For instance, in Spring-8 (http://www.spring8.or.jp/ja/, electrons
are accelerated up to ~8 GeV.

"X-rays and gamma-rays from blazers are explained by the SSC model such that X-rays are mostly due to
synchrotron and gamma-rays are due to inverse-Compton.
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Figure 5.7: Repeated Comptonization from a cloud of thermal plasma for 75 = 1, 0.1 and
0.001 (from top to bottom) to demonstrate that thermal Comptonization forms power-law
spectra, and that the spectrum is flatter as the optical depth (Compton y-parameter) becomes
larger. Taken from Pozdnyakov, Sobol and Syunyaev 1983, ASPR, v2, p.189.
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Figure 4.11.  The Comptonisation of low frequency photons in a spherical plasma
cloud having AT, = 25 keV. The solid curves are analytic solutions of the K
equation (see Pozdnyakov et al. (1983)); the results of Monte Carlo simulations of the
Compton scaltering process are shown by the histograms and therc is good agreement

Figure 5.8: (Left) Thermal bremsstrahlung model spectra with k7, = 25 keV with
Tset = 3,4,5,7and10. (Right) Cyg X-1 low-state energy spectrum fitted with a thermal
bremsstrahlung spectrum with k7,=27 keV and 744 = 5. Both figures taken from Longair,
“High Energy Astrophysics”.
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Since v does not depend on v nor v,

d —1
Te() ()
Y Ve Ve

Thus,

OC/S(V/VC)VC_”/Z“/? <1/Vc>_1d<uyc>
_ /S(u/uc) (%)‘P/}H/? ,—P/2+1/2 <:)1d<5>

—v /S(V/yc) (5) = d <V”> . (5.34)

When electron distribution (5.33) is over a large enough energy range, we may integrate
from 0 to oo, then the integral will take a constant value not depending on v.

Now, we got the following important relationship; when relativistic electron distribution
1s represented with a power-law o< v~P, the expected synchrotron radiation and the inverse-
Compton radiation have the power-law energy spectra, oc v—*%, with the energy index

p—1

=1 (5.35)

Note that we are not able to directly measure p of the electron energy distribution. When
power-law energy spectra of photons are observed, we can measure s then estimate p using

(5.35).

5.5.2 Synchrotron radiation

As we have seen in (2.13), cyclotron frequency of an electrons in the magnetic field B is

eB
V= .
2mmec

(5.36)

Note that in the cyclotron motion, mono-energetic photons are emitted.
When the electron becomes relativistic, where the energy is mc?y, typical frequency of
the synchrotron radiation is®,

_ 3v2eB sin «

Ve =

(5.37)

2Tmec

where « is the constant pitch-angle between magnetic field and the electron motion. Note that
in synchrotron emission, not mono-energetic photons, but an energy spectrum of photons is
observed (Figure 5.9 top). According to precise calculation, a single electron with the energy
mc?y emit synchrotron ration spectrum whose peak frequency is 0.29 v, (Figure 5.9, up).

8Definition is different for different text books or papers. We follow Katz’s definition. Rybicki & Lightman
adopts half of (5.37) as ve.
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Figure 5.9: (Top) Synchrotron radiation spectrum from a single electron (above), where the
peak is at w. = 0.29v,.. (Bottom) Formation of a power-law spectrum by superposition of
these spectra integrating over the power-law electron energy distribution (5.33). Taken from
dooooooooo>”oo0o000ooa 11,

If these spectra from elections following the power-law energy distribution (5.33) are
superposed, power-law photon radiation spectrum is expected (Figure 5.9 bottom)O
Luminosity [erg/s| of the synchrotron radiation from a single electron is given as

4
Psynch = §0T05272UB7 (538)
where o7 is Thomson cross-section, Ug = B?/8 is the magnetic energy density. This formula

can be intuitively understood that an electron having the cross-section o [cm?] is colliding
with the magnetic field Ug [erg/cm?] at the light velocity ¢ [cm/s].

5.5.3 Non-thermal (relativistic) inverse Compton emission

When the electron has the velocity v, and 8 = v/c,y = (1 — 52)71/2, let’s put the incident
photon energy in the laboratory frame v, and that in the electron rest-frame v/. In the
laboratory frame, put the angle between the electron direction and the incident photon as 6,
then

v =vy(1 - Bcosh). (5.39)

We may assume hr' < mec? in the electron-rest frame, so that the this collision may be
assumed as Thomson scattering, where the output photon frequency is /. In the electron
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rest-frame, if put the angle between the electron direction and output photon ¢’, the output
photon frequency in the laboratory frame, v, is

V' =1'y(1+ Bceost). (5.40)

Since 0 and 0’ are ~ /2,
V'~ 52 (5.41)

Now we got an important result that a photon energy will be boosted by v times due to a
single relativistic Comptonization.
Luminosity [erg/s] of the relativistic Comptonization from a single electron is given as

4
Pcompt = gUTC/B2’Y2Uph (542)
where o7 is Thomson cross-section, Upy, is the photon energy density. This formula can be
intuitively understood that an electron having the cross-section o [em?] is colliding with the
photon field Uy, [erg/cm?] at the light velocity ¢ [cm/s]. This is similar to the interpretation
of the synchrotron luminosity (5.38), where only Up is replace with Upy,.

5.5.4 Synchrotron emission and inverse-compton emission from inter-stellar
relativistic electrons

From (5.38) and (5.42), when low energy photons, whose energy density is Uy, and magnetic
field, whose energy density is Up, co-exist in the relativistic electron distribution, ratio of the
synchrotron radiation luminosity and the inverse-Compton radiation luminosity is given by

P, synch Up
P, compt Uph

(5.43)

If we consider typical inter-stellar magnetic field ~ 3uGauss, the magnetic energy density

is
Up ~ (3 x107%)2/(87) ~ 3.6 x 1073 [erg/cm?®] ~ 0.22 [V /cm?]. (5.44)
On the other hand, the energy density of CMBR is U, ~ 0.26 eV (p.77), Namely, when
relativistic electrons exist in the inter-stellar space, their synchrotron radiation luminosity and

the inverse-Compton luminosity, where soft-photons are supplied by the CMBR, are nearly
equal.






Appendix A

Bremsstrahlung

A.1 Preperationl: Variation of electromagnetic field and en-
ergy spectar

When electromagnetif fields vary, the electric field and magnetic field are orthogonal, and the
Pointing vector,

S = i (E x B) (A.1)

show the energy flow in the direction of the electromagnetic wave. In the Gauss unit, |E||B|
or |E|? or |B|? have the unit of energy density [erg/cm?], so the Pointing vector has the unit
of energy flux, [erg/s/cm?].

In electromagnetic wave, amplitudes of the electrci field and the magnetic field are the
same, so energy flow of the electromagnetic wave per unit-time per unit-area in [erg/s/cm?]
is

aw c 9
— = — . A2
dtdA 4w ®) (4.2)
If E(t) varies like a “pulse”, the total enerty in [erg/cm?] is given by
aw ¢ [
——=— [ E@®)?dt Al
g A0 (43)
Fourier transfor of E(t) will be
E(w) = S / h E(t)e™'dt (A.4)
C2r ) o ’ '
and the following relation hold;
/ E(t)%dt = 271'/ |E(w)|2dw. (A.5)
Also, since E(t) is real,
n 1 > —iwt nEd
E(—w) = Py E(t)e "™ dt = E*(t). (A.6)
T J -0
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Using these relations, (A.3) can be written as

?X:c/o |E(w)|?dw. (A7)
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Figure A.1: An electron passing near a nuclei with the impact parameter b.
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A.4. ENERGY SPECTRA OF THERMAL BREMSSTRAHLUNG 99
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A.4 Energy spectra of thermal bremsstrahlung
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absorption coefficient, 73 effective temperature, 78

absorption line, 74 Einstein’s A and B coefficients, 75

accretion disk, 25, 31 Einstein’s relationship, 75

adaptive optics, 41 electrical dipole, 81

all-sky survey, 44 emission measure, 83, 99

annihilation line, 14 emissivity, 73

area velocity, 64 Equatorial coordinates, 42
Euler angles, 44

barycentric correction, 11 Euler’s rotation theorem, 56

blackbody emission, 74 extinction, 28

blackbody radiation, 75

blazers, 88 Fermi acceleration, 88

Bohr radius, 16 fine structure constant, 15

bremsstrahlung, 81, 95 . .

brightness, 74 Galactic coordinates, 42

galaxies, 81

Gaunt factor, 99
Cataclysmic Variables, 81 geosynchronous satellites, 68
Cataclysmic Variables (CVs), 81
classical electron radius, 15
clusters of galaxies, 81

color temperature, 78

column density, 26

Compton thick, 16

Compton wave-length, 9, 87
Compton y-parameter, 87

brightness temperature, 79

hardening factor, 80
hydrogenic-ion, 16

induced emission, 75

Interstellar Extinction, 28

inverse Compton scattering, 79, 88
inverse quaternion, 59

Comptonization, 87 Kepler’s second law, 64, 65

conjugate (of quaternion), 59 Kepler’s third law, 65

conversion matrix, 49 Kepler’s three laws, 63

Cosmic Microwave Background Radiation, 77 Klen-Nishina cross-section, 87

cross section, 73 Kronecker’s delta, 50

cyclotron emission, 17

cyclotron frequency, 17, 91 local thermal equilibrium (LTE), 74
Lorentz transformation, 92

direction cosine, 49 Low Earth Orbit (LEO), 68

Lyman edge energy, 16
ecliptic coordinates, 42

Eddington limit, 19 magnetars, 21
Eddington luminosity, 19 mass absorption coefficient, 73
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mean free path, 73 unit quaternion, 57, 59
UV-bump, 38
Non-thermal (relativistic) inverse Compton emis-
sion, 92 vector triple product, 59
norm (of quaternion), 59 viscous parameter, 36

North Ecliptic Pole (NEP, 44
warm absorber, 19

opacity, 16, 73 Wien law, 76
optical depth, 73, 74

orbital six elements, 67

orthogonal matrix, 49

orthogonal transformation, 49

photoionization, 19
Planck density, 8
Planck length, 8
Planck mass, 8
Planck time, 8

quaternion, 56

radiative transfer, 74

Rayleigh-Jeans law, 76

reduced mass, 64

relativistic inverse-Compton emission, 88
roll-angle, 47

satellite coordinates, 44

Scalar triple product, 50
Schwarzschild radius, 8

seeing, 41

semi-latus rectum, 65

slim disk, 38

source function, 73

South Ecliptic Pole (SEP), 44
specific intensity, 74

spontaneous emission, 75
Stephan-Boltzmann constant, 12, 77
Sun-synchronous orbit (SSO), 69
supernova remnants (SNRs), 81
synchrotron radiation, 88
synchrotron radiation facility, 88
synchrotron self-compton (SSC), 88

thermal bremsstrahlung, 79, 95
Thomson thick, 16

two body problem, 63

Two Line Elements (TLE), 68
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